
Applications of Automata and Concurrency
Theory in Networks

Alexandra Silva

University College London

CONCUR 2015

Context

Automata

I Automata are basic structures in Computer Science

I Language equivalence: well-studied, several algorithms

I New perspectives key algorithmic improvements

Automata

I Automata are basic structures in Computer Science

I Language equivalence: well-studied, several algorithms

I New perspectives key algorithmic improvements

Concurrency

I Concurrency Theory: labelled transition systems

•
a

��

a

��
•

b

��

•

c

��

6∼

• •

•
a

��
•

b

��

c

��
• •

I Central research topic: a spectrum of equivalences

The spectrum of equivalences

I Many efficient algorithms for equivalence of automata.

I Applications in concurrency?

Various spectrum equivalences
=

Language equivalence of a transformed system
=

Automaton with outputs and structured states (Moore automaton).

Bonsangue, Bonchi, Caltais, Rutten, Silva. MFPS 12

I Many efficient algorithms for equivalence of automata.

I Applications in concurrency?

Various spectrum equivalences
=

Language equivalence of a transformed system
=

Automaton with outputs and structured states (Moore automaton).

Bonsangue, Bonchi, Caltais, Rutten, Silva. MFPS 12

I Generalization of existing algorithms to Moore automata

I Small step conceptually, great impact application-wise

I Method: coalgebra

Bonchi, Caltais, Pous, Silva. APLAS 2013

I Generalization of existing algorithms to Moore automata

I Small step conceptually, great impact application-wise

I Method: coalgebra

Bonchi, Caltais, Pous, Silva. APLAS 2013

Algorithm derivation from the type

Equivalence/Minimization algorithms from the type X → TX?

Deterministic automata X → 2× XA

Moore automata X → B × XA

Linear weighted automata V → R× V A

KAT automata B → B× BB×A
...

...

Algorithm derivation from the type

Equivalence/Minimization algorithms from the type X → TX?

Deterministic automata X → 2× XA

Moore automata X → B × XA

Linear weighted automata V → R× V A

KAT automata B → B× BB×A
...

...

Context

Networking

“The last bastion of mainframe computing” [Hamilton 2009]

I Modern computers
I implemented with commodity hardware
I programmed using general-purpose languages, standard interfaces

I Networks
I built and programmed the same way since the 1970s
I low-level, special-purpose devices implemented on custom hardware
I routers and switches that do little besides maintaining routing tables

and forwarding packets
I configured locally using proprietary interfaces
I network configuration (“tuning”) largely a black art

Networking

I Difficult to implement end-to-end routing policies and optimizations
that require a global perspective

I Difficult to extend with new functionality

I Effectively impossible to reason precisely about behavior

Software Defined Networks (SDN)

Main idea behind SDN

A general-purpose controller manages a collection of programmable
switches

I controller can monitor and respond to network events
I new connections from hosts
I topology changes
I shifts in traffic load

I controller can reprogram the switches on the fly
I adjust routing tables
I change packet filtering policies

Software Defined Networks (SDN)

Controller has a global view of the network

Enables a wide variety of applications:

I standard applications
I shortest-path routing
I traffic monitoring
I access control

I more sophisticated applications
I load balancing
I intrusion detection
I fault tolerance

Software Defined Networks (SDN)

“ In the SDN architecture, the control and data planes are
decoupled, network intelligence and state are logically
centralized, and the underlying network infrastructure
is abstracted from the applications. As a result, en-
terprises and carriers gain unprecedented programma-
bility, automation, and network control, enabling them
to build highly scalable, flexible networks that readily

adapt to changing business needs.”

—Open Networking Foundation, Software-Defined Networking: The New
Norm for Networks, 2012

OpenFlow

A first step: the OpenFlow API [McKeown & al., SIGCOMM 08]

I specifies capabilities and behavior of switch hardware

I a language for manipulating network configurations

I very low-level: easy for hardware to implement, difficult for humans
to write and reason about

But. . .

I is platform independent

I provides an open standard that any vendor can implement

Network Programming Languages & Analysis Tools
Goals:

I raise the level of abstraction above hardware-based APIs (OpenFlow)

I make it easier to build sophisticated and reliable SDN applications
and reason about them

I Formally Verifiable Networking [Wang & al., HotNets 09]

I FlowChecker [Al-Shaer & Saeed Al-Haj, SafeConfig 10]

I Anteater [Mai & al., SIGCOMM 11]

I Nettle [Voellmy & Hudak, PADL 11]

I Header Space Analysis [Kazemian & al., NSDI 12]

I Frenetic [Foster & al., ICFP 11] [Reitblatt & al., SIGCOMM 12]

I NetCore [Guha & al., PLDI 13] [Monsanto & al., POPL 12]

I Pyretic [Monsanto & al., NSDI 13]

I VeriFlow [Khurshid & al., NSDI 13]

I Participatory networking [Ferguson & al., SIGCOMM 13]

I Maple [Voellmy & al., SIGCOMM 13]

Network Programming Languages & Analysis Tools
Goals:

I raise the level of abstraction above hardware-based APIs (OpenFlow)

I make it easier to build sophisticated and reliable SDN applications
and reason about them

I Formally Verifiable Networking [Wang & al., HotNets 09]

I FlowChecker [Al-Shaer & Saeed Al-Haj, SafeConfig 10]

I Anteater [Mai & al., SIGCOMM 11]

I Nettle [Voellmy & Hudak, PADL 11]

I Header Space Analysis [Kazemian & al., NSDI 12]

I Frenetic [Foster & al., ICFP 11] [Reitblatt & al., SIGCOMM 12]

I NetCore [Guha & al., PLDI 13] [Monsanto & al., POPL 12]

I Pyretic [Monsanto & al., NSDI 13]

I VeriFlow [Khurshid & al., NSDI 13]

I Participatory networking [Ferguson & al., SIGCOMM 13]

I Maple [Voellmy & al., SIGCOMM 13]

Network Programming Languages & Analysis Tools
Goals:

• raise the level of abstraction above hardware-based APIs (OpenFlow)

• make it easier to build sophisticated and reliable SDN applications
and reason about them

• Formally Verifiable Networking [Wang & al., HotNets 09]

• FlowChecker [Al-Shaer & Saeed Al-Haj, SafeConfig 10]

• Anteater [Mai & al., SIGCOMM 11]

• Nettle [Voellmy & Hudak, PADL 11]

• Header Space Analysis [Kazemian & al., NSDI 12]

I Frenetic [Foster & al., ICFP 11] [Reitblatt & al., SIGCOMM 12]

I NetCore [Guha & al., PLDI 13] [Monsanto & al., POPL 12]

• Pyretic [Monsanto & al., NSDI 13]

• VeriFlow [Khurshid & al., NSDI 13]

• Participatory networking [Ferguson & al., SIGCOMM 13]

• Maple [Voellmy & al., SIGCOMM 13]

NetKAT papers

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,
Dexter Kozen, Cole Schlesinger, and David Walker, NetKAT: Semantic
Foundations for Networks. POPL 14.

Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure
Thompson, A Coalgebraic Decision Procedure for NetKAT. POPL 15.

NetKAT

Simple programming language/logic, expressive enough for basic
properties.

Reachability
I Can host A communicate with host B? Can every host

communicate with every other host?

Security
I Does all untrusted traffic pass through the intrusion detection

system located at C?

I Are non-SSH packets forwarded? Are SSH packets dropped?

Loop detection
I Is it possible for a packet to be forwarded around a cycle in the

network?

Policy equivalence
I Given the network topology, are policies p and q equivalent?

NetKAT [Anderson & al. 14]

NetKAT
=

Kleene algebra with tests (KAT)
+

additional specialized constructs particular to
network topology and packet switching

Kleene Algebra (KA)

Stephen Cole Kleene
(1909–1994)

(0 + 1(01∗0)∗1)∗

{multiples of 3 in binary}
1

0

1

0

0

1

(ab)∗a = a(ba)∗

{a, aba, ababa, . . .}
a

b

(a + b)∗ = a∗(ba∗)∗

{all strings over {a, b}}
a + b

Foundations of the Algebraic Theory

John Horton Conway
(1937–)

J. H. Conway. Regular Algebra
and Finite Machines. Chapman
and Hall, London, 1971.

Axioms of KA

Idempotent Semiring Axioms

p + (q + r) = (p + q) + r p(qr) = (pq)r

p + q = q + p 1p = p1 = p

p + 0 = p p0 = 0p = 0

p + p = p

p(q + r) = pq + pr a ≤ b
4⇐⇒ a + b = b

(p + q)r = pr + qr

Axioms for ∗

1 + pp∗ ≤ p∗ q + px ≤ x ⇒ p∗q ≤ x

1 + p∗p ≤ p∗ q + xp ≤ x ⇒ qp∗ ≤ x

Standard Model

Regular sets of strings over Σ

A + B = A ∪ B

AB = {xy | x ∈ A, y ∈ B}
A∗ =

⋃
n≥0

An = A0 ∪ A1 ∪ A2 ∪ · · ·

1 = {ε}
0 = ∅

This is the free KA on generators Σ

Deciding KA

I PSPACE-complete [(1 + Stock)Meyer 74]

I automata-based decision procedure
I nondeterministically guess a string in L(M1) ⊕ L(M2), simulate the

two automata
I convert to deterministic using Savitch’s theorem
I inefficient—Ω(n2) space, exponential time best-case

I coalgebraic decision procedures [Silva 10, Bonchi & Pous 12]

I bisimulation-based
I uses Brzozowski/Antimirov derivatives
I Hopcroft–Karp union-find data structure, up-to techniques
I implementation in OCaml
I linear space, practical

Kleene Algebra with Tests (KAT)

(K ,B,+, ·,∗ , , 0, 1), B ⊆ K

I (K ,+, ·,∗ , 0, 1) is a Kleene algebra

I (B,+, ·, , 0, 1) is a Boolean algebra

I (B,+, ·, 0, 1) is a subalgebra of (K ,+, ·, 0, 1)

I p, q, r , . . . range over K

I a, b, c , . . . range over B

Modeling While Programs

p; q
4
= pq

if b then p else q
4
= bp + bq

while b do p
4
= (bp)∗b

KAT Results

Deductive Completeness and Complexity
I deductively complete over language, relational, and trace models

I subsumes propositional Hoare logic (PHL)

I decidable in PSPACE

Applications
I protocol verification

I static analysis and abstract interpretation

I verification of compiler optimizations

NetKAT

NetKAT

I a packet π is an assignment of constant values n to fields x

I a packet history is a nonempty sequence of packets
π1 :: π2 :: · · · :: πk

I the head packet is π1

NetKAT

I assignments x ← n
assign constant value n to field x in the head packet

I tests x = n
if value of field x in the head packet is n, then pass, else drop

I dup
duplicate the head packet

NetKAT

Example

sw = 6 ; pt = 88 ; dest ← 10.0.0.1 ; pt ← 50

“For all packets incoming on port 88 of switch 6, set the destination IP
address to 10.0.0.1 and send the packet out on port 50.”

NetKAT Axioms

x ← n ; y ← m ≡ y ← m ; x ← n (x 6= y)
assignments to distinct fields may be done in either order

x ← n ; y = m ≡ y = m ; x ← n (x 6= y)
an assignment to a field does not affect a different field

NetKAT Axioms

x ← n ; y ← m ≡ y ← m ; x ← n (x 6= y)
assignments to distinct fields may be done in either order

x ← n ; y = m ≡ y = m ; x ← n (x 6= y)
an assignment to a field does not affect a different field

x = n ; dup ≡ dup ; x = n
field values are preserved in a duplicated packet

x ← n ≡ x ← n ; x = n
an assignment causes the field to have that value

x = n ; x ← n ≡ x = n
an assignment of a value that the field already has is redundant

x ← n ; x ← m ≡ x ← m
a second assignment to the same field overrides the first

x = n ; x = m ≡ 0 (n 6= m) (
∑

n x = n) ≡ 1
every field has exactly one value

Standard Model

Standard model of NetKAT is a packet-forwarding model

JeK : H → 2H

where H = {packet histories}

Jx ← nK(π1 :: σ)
4
= {π1[n/x] :: σ}

Jx = nK(π1 :: σ)
4
=

{
{π1 :: σ} if π1(x) = n

∅ if π1(x) 6= n

JdupK(π1 :: σ)
4
= {π1 :: π1 :: σ}

Standard Model

Jp + qK(σ)
4
= JpK(σ) ∪ JqK(σ)

Jp ; qK(σ)
4
=

⋃
τ∈JpK(σ)

JqK(τ)

Jp∗K(σ)
4
=

⋃
n

JpnK(σ)

J1K(σ)
4
= JpassK(σ) = {σ}

J0K(σ)
4
= JdropK(σ) = ∅

Example

Reachability
I Can host A communicate with host B? Can every host

communicate with every other host?

Encoding Network Topology

Modeling Links

sw = A ; pt = n ; sw ← B ; pt ← m

A B
n m

I filters out all packets not located at the source end of the link

I updates switch and port fields to the location of the target end

I this captures the effect of sending the packet across the link

I network topology is expressed as a sum of link expressions

Switch Policies

Switch behavior for switch A is specified by a NetKAT term

sw = A ; pA

where pA specifies what to do with packets entering switch A

pApA

A

Example

pt = n ; dest = a ; dest ← b ; (pt ← m + pt ← k)

Incoming packets on port n with destination a ⇒ modify destination to b
and send out on ports m and k

Switch policy pA is the sum of all such behaviors for A

Putting It Together

Let

I t = sum of all link expressions

I p = sum of all switch policies

Then

I pt = one step of the network

I each switch processes its packets, then sends them along links to the
next switch

I (pt)∗ = the multistep behavior of the network in which the
single-step behavior is iterated

Reachability

To check if any packet can travel from A to B given the topology and
the switch policies, ask whether

sw = A ; t(pt)∗ ; sw = B 6≡ 0 (drop).

I prefix sw = A filters out packets not at A

I suffix sw = B filters out packets not at B

Other Applications

I forwarding loops

I traffic isolation

I access control

I correctness of a compiler that maps a NetKAT expression to a set of
individual flow tables that can be deployed on the switches

Results

Soundness and Completeness [Anderson et al. 14]

I ` p = q if and only if JpK = JqK

Decision Procedure [Foster et al. 15]

I NetKAT coalgebra

I Efficient bisimulation-based decision procedure

I Implementation in OCaml

I Deployed in the Frenetic suite of network management tools

A Bisimulation-Based Algorithm

To check e1 = e2, convert to automata, check bisimilarity

I exploits a sparse matrix representation

I Hopcroft-Karp union-find data structure to represent bisimilarity
classes

I BDDs to represent tests (new — based on Pous, POPL 15)

I algorithm is competitive with state of the art

A Bisimulation-Based Algorithm [Foster & al. 15]

I Topology Zoo
I 261 real-world network topologies;
I Use shortest path forwarding as network program;
I Results:

I Stanford Campus Network
I Use actual router configurations
I Results: Point to point reachability in 0.67s (vs 13s for HSA)

A Bisimulation-Based Algorithm [Foster & al. 15]

I Topology Zoo
I 261 real-world network topologies;
I Use shortest path forwarding as network program;
I Results:

I Stanford Campus Network
I Use actual router configurations
I Results: Point to point reachability in 0.67s (vs 13s for HSA)

Probabilistic NetKAT

I How much congestion is there?

I Is the network resilient under failure?

I Reducing costs without compromising reliability

I Modular extension of NetKAT with probabilistic constructs

I Compositional semantics

I Compiler, Decision procedures, . . .

Compositional quantitative reasoning fully realize the vision of SDN

Probabilistic NetKAT

I How much congestion is there?

I Is the network resilient under failure?

I Reducing costs without compromising reliability

I Modular extension of NetKAT with probabilistic constructs

I Compositional semantics

I Compiler, Decision procedures, . . .

Compositional quantitative reasoning fully realize the vision of SDN

ProbNetKAT

S1

S2

S4

S3

10% probability of failure of the link
S1 → S2, topology t encoded as:

t =(sw = S1; pt = 2; ((sw ← S2; pt ← 1)⊕.9 drop))

& (sw = S1; pt = 3; sw ← S3; pt ← 1)

& (sw = S2; pt = 4; sw ← S4; pt ← 2)

& (sw = S3; pt = 4; sw ← S4; pt ← 3).

Semantics in terms of Markov Kernels.

ProbNetKAT

S1

S2

S4

S3

10% probability of failure of the link
S1 → S2, topology t encoded as:

t =(sw = S1; pt = 2; ((sw ← S2; pt ← 1)⊕.9 drop))

& (sw = S1; pt = 3; sw ← S3; pt ← 1)

& (sw = S2; pt = 4; sw ← S4; pt ← 2)

& (sw = S3; pt = 4; sw ← S4; pt ← 3).

Semantics in terms of Markov Kernels.

Conclusion

I Programming languages have a key role to play in emerging
platforms for managing software-defined networks

I NetKAT is a high-level language for programming and reasoning
about network behavior in the SDN paradigm

I formal denotational semantics, complete deductive system
I efficient bisimulation-based decision procedure

I Future work:
I further optimizations to reduce state space
I generating proof artifacts
I refinement calculus
I concurrent/distributed NetKAT
I Many opportunities for the concurrency community!

Bridges

I Abstraction can bring new perspectives and solutions

I Transference of techniques is a two-way street

I Solid foundations are crucial for new paradigms

For papers and code, please visit:
http://frenetic-lang.org/

Thanks!

