Applications of Automata and Concurrency
Theory in Networks

Alexandra Silva

University College London

CONCUR 2015

Context

Automaka

C.oatgebra\

Software-defined
Networlks

Cohcurrehcvj

Automata

» Automata are basic structures in Computer Science

» Language equivalence: well-studied, several algorithms

e =
b

Automata

» Automata are basic structures in Computer Science

» Language equivalence: well-studied, several algorithms
a
"@/_\(3)o-
~——
b
b

» New perspectives ~» key algorithmic improvements

Concurrency

» Concurrency Theory: labelled transition systems

» Central research topic: a spectrum of equivalences

The spectrum of equivalences

bisimulation semantics
2-nested simulation semantics

ready simulation semantics

possible-futures semantics

possible worlds semantics

ready trace semantics

failure trace semantics readiness semantics

simulation semantics
failures semantics

tics

leted
completed trace

trace semantics

Aubomaka Concurrency

» Many efficient algorithms for equivalence of automata.

» Applications in concurrency?

Aubomaka Concurrency

» Many efficient algorithms for equivalence of automata.

» Applications in concurrency?

Various spectrum equivalences

Language equivalence of a transformed system

Automaton with outputs and structured states (Moore automaton).

Aubomaka Concurrency

» Generalization of existing algorithms to Moore automata

Aubomaka Concurrency

> Generalization of existing algorithms to Moore automata
» Small step conceptually, great impact application-wise
» Method: coalgebra

Algorithm derivation from the type

Equivalence/Minimization algorithms from the type X — TX?

Deterministic automata X 3 2x XA

Moore automata X = B x XA
Linear weighted automata ~ V — R x VA
KAT automata B— B x BBxA

Algorithm derivation from the type

Equivalence/Minimization algorithms from the type X — TX?

Deterministic automata

Moore automata
Linear weighted automata
KAT automata

e e e
Program

X —2x XA verification
T
X — B x XA
V 53R x VA Cohcur'rehcv
B — B x BBXA The_orv
: S

Software-
defined

networks

Context

Automaka

C.oai.gebra

Software-defined
Networlks

Cohcurretr\cvj

Networking

“The last bastion of mainframe computing” [Hamilton 2009]

» Modern computers

> implemented with commodity hardware
» programmed using general-purpose languages, standard interfaces

> Networks
> built and programmed the same way since the 1970s
> low-level, special-purpose devices implemented on custom hardware
> routers and switches that do little besides maintaining routing tables
and forwarding packets
» configured locally using proprietary interfaces
> network configuration (“tuning”) largely a black art

Networking

» Difficult to implement end-to-end routing policies and optimizations
that require a global perspective

» Difficult to extend with new functionality

» Effectively impossible to reason precisely about behavior

Software Defined Networks (SDN)

Main idea behind SDN

A general-purpose controller manages a collection of programmable
switches

» controller can monitor and respond to network events
> new connections from hosts
> topology changes
> shifts in traffic load

» controller can reprogram the switches on the fly

> adjust routing tables
> change packet filtering policies

SDN Network Architecture

Ox Controller
Platform
1

or POX, Beacon, Floodlight, others - ,
e ! 1

OpenFIow API

@@'

OpenFlow-compatible
switches
Pica8, Dell, NEC, HP, many others

Software Defined Networks (SDN)

Controller has a global view of the network

Enables a wide variety of applications:
» standard applications

> shortest-path routing
> traffic monitoring
> access control

» more sophisticated applications

> load balancing
> intrusion detection
» fault tolerance

Software Defined Networks (SDN)

“In the SDN architecture, the control and data planes are
decoupled, network intelligence and state are logically
centralized, and the underlying network infrastructure
is abstracted from the applications. As a result, en-
terprises and carriers gain unprecedented programma-
bility, automation, and network control, enabling them
to build highly scalable, flexible networks that readily
adapt to changing business needs. &

—Open Networking Foundation, Software-Defined Networking: The New
Norm for Networks, 2012

OpenFlow

A first step: the OpenFlow API [McKeown & al., SIGCOMM 08]

» specifies capabilities and behavior of switch hardware
> a language for manipulating network configurations

> very low-level: easy for hardware to implement, difficult for humans
to write and reason about

But. ..

> is platform independent

» provides an open standard that any vendor can implement

A Major Trend in Industry
fQgman _—

Google

Network Programming Languages & Analysis Tools

Goals:
> raise the level of abstraction above hardware-based APIs (OpenFlow)

> make it easier to build sophisticated and reliable SDN applications
and reason about them

Network Programming Languages & Analysis Tools

Goals:
> raise the level of abstraction above hardware-based APIs (OpenFlow)

> make it easier to build sophisticated and reliable SDN applications
and reason about them

Formally Verifiable Networking [Wang & al., HotNets 09]
FlowChecker [Al-Shaer & Saeed Al-Haj, SafeConfig 10]
Anteater [Mai & al., SIGCOMM 11]

Nettle [Voellmy & Hudak, PADL 11]

Header Space Analysis [Kazemian & al., NSDI 12]
Frenetic [Foster & al., ICFP 11] [Reitblatt & al., SIGCOMM 12]
NetCore [Guha & al., PLDI 13] [Monsanto & al., POPL 12]
Pyretic [Monsanto & al., NSDI 13]

VeriFlow [Khurshid & al., NSDI 13]

Participatory networking [Ferguson & al., SIGCOMM 13]
Maple [Voellmy & al., SIGCOMM 13]

vV V. vV vV vV V. VvV VvV VvV VY

Network Programming Languages & Analysis Tools

> Frenetic [Foster & al., ICFP 11] [Reitblatt & al., SIGCOMM 12]
» NetCore [Guha & al., PLDI 13] [Monsanto & al., POPL 12]

NetKAT papers

Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,
Dexter Kozen, Cole Schlesinger, and David Walker, NetKAT: Semantic
Foundations for Networks. POPL 14.

Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure
Thompson, A Coalgebraic Decision Procedure for NetKAT. POPL 15.

NetKAT

Simple programming language/logic, expressive enough for basic
properties.

Reachability

» Can host A communicate with host B? Can every host
communicate with every other host?

Security

» Does all untrusted traffic pass through the intrusion detection
system located at C?

» Are non-SSH packets forwarded? Are SSH packets dropped?
Loop detection

> |s it possible for a packet to be forwarded around a cycle in the
network?

Policy equivalence

» Given the network topology, are policies p and g equivalent?

NetKAT [Anderson & al. 14]

NetKAT
Kleene algebra with tests (KAT)
|
additional specialized constructs particular to
network topology and packet switching

Kleene Algebra (KA)

(0+1(01*0)*1)*
{multiples of 3 in binary}
1 0

B

0 1
(ab)*a = a(ba)*
{a, aba, ababa, ...}
b
(a b)" = a(ba")"

{all strings over {a, b}}
Stephen Cole Kleene —@a+b

(1909-1994)

Foundations of the Algebraic Theory

J. H. Conway. Regular Algebra
and Finite Machines. Chapman
and Hall, London, 1971.

i
John Horton Conway
(1937-)

Axioms of KA

Idempotent Semiring Axioms

p+(g+r)=(p+q)+r p(ar) = (pq)r
p+g=q+p lp=pl=p
p+0=p p0=0p=0
p+p=p

p(g+r) = pq+pr a<b<csatb=b

(p+q)r=pr+agqr

Axioms for *

1+pp* <p" g+px<x = p'g<x
IL+p'p<p" g+xp<x = gp* <x

Standard Model

Regular sets of strings over

A+B = AUB
AB = {xy|x€A yeB}
A = | JA" = AUAUAU---
n>0
1 = {¢}
0 = o

This is the free KA on generators ¥

Deciding KA

» PSPACE-complete [(1 + Stock)Meyer 74]

>

>

automata-based decision procedure
nondeterministically guess a string in L(M;) @& L(M-), simulate the
two automata

> convert to deterministic using Savitch's theorem
> inefficient—S(n?) space, exponential time best-case

> coalgebraic decision procedures [Silva 10, Bonchi & Pous 12]

>

vvyVvVly

bisimulation-based

uses Brzozowski/Antimirov derivatives

Hopcroft—Karp union-find data structure, up-to techniques
implementation in OCaml

linear space, practical

Kleene Algebra with Tests (KAT)

(K787+7'7*77a051)1 BgK

» (K,+,-,*,0,1) is a Kleene algebra
» (B,+,-,7,0,1) is a Boolean algebra
» (B,+,-,0,1) is a subalgebra of (K,+,-,0,1)

v

p,q,r,...range over K

» a,b,c,... range over B

Modeling While Programs

piq = pq
bp + bq

while bdo p = (bp)*b

>

if b then p else g

KAT Results

Deductive Completeness and Complexity
» deductively complete over language, relational, and trace models
> subsumes propositional Hoare logic (PHL)
» decidable in PSPACE

Applications
» protocol verification
> static analysis and abstract interpretation

» verification of compiler optimizations

NetKAT

NetKAT

> a packet 7 is an assignment of constant values n to fields x
> a packet history is a nonempty sequence of packets
T I il Mg

» the head packet is m;

NetKAT

> assignments x <— n
assign constant value n to field x in the head packet

> tests x =n

if value of field x in the head packet is n, then pass, else drop
» dup

duplicate the head packet

NetKAT

Example
sw =6; pt = 88; dest + 10.0.0.1; pt «+ 50

“For all packets incoming on port 88 of switch 6, set the destination IP
address to 10.0.0.1 and send the packet out on port 50.”

NetKAT Axioms

Xny+m=y+m;x+n (x#£y)
assignments to distinct fields may be done in either order

Xn,y=m=y=m;x+n (x#y)
an assignment to a field does not affect a different field

NetKAT Axioms

Xny+m=y+m;xn (x#£y)
assignments to distinct fields may be done in either order

Xn;y=m=y=m;x<n (x#£y)
an assignment to a field does not affect a different field

x=n;dup = dup;x=n
field values are preserved in a duplicated packet

XN = x4n;x=n
an assignment causes the field to have that value

X=Nn;X4n = Xx=n
an assignment of a value that the field already has is redundant

X4 N; X m= X< m
a second assignment to the same field overrides the first
x=n;x=m =0 (n#m) Oo,x=n) =1

every field has exactly one value

Standard Model

Standard model of NetKAT is a packet-forwarding model
[e] : H— 2"

where H = {packet histories}

[x < n](m 2 0) = {m[n/x]:: o}

a {m o} ifm(x)=
1) if m1(x) #

{m =m0}

==
x
I
3
=
—~
3
=
Q
SN—r
>

n
n

[I>

Standard Model

[pl(e) U [al(o)
U [l

T€[p](o)

[p1(e) = UIP1(0)

[1(e) £ [passl(e) = {o
[0(0) £ [drop](c) = @

[P+ ql(o)
[p: ql(o)

Q

}

Example

Reachability

» Can host A communicate with host B7 Can every host
communicate with every other host?

Encoding Network Topology

Modeling Links

sw=A;pt=n;sw<+ B;pt< m

filters out all packets not located at the source end of the link
updates switch and port fields to the location of the target end
this captures the effect of sending the packet across the link

network topology is expressed as a sum of link expressions

Switch Policies

Switch behavior for switch A is specified by a NetKAT term
sw=A;pa

where p, specifies what to do with packets entering switch A

———>
— >
_— -} >
e —>
T —
A

Example
pt = n; dest = a; dest <+ b; (pt + m+ pt < k)

Incoming packets on port n with destination a = modify destination to b
and send out on ports m and k

Switch policy pa is the sum of all such behaviors for A

Putting It Together

Let
» t = sum of all link expressions
» p = sum of all switch policies
Then
» pt = one step of the network

> each switch processes its packets, then sends them along links to the
next switch

> (pt)* = the multistep behavior of the network in which the
single-step behavior is iterated

Reachability

To check if any packet can travel from A to B given the topology and
the switch policies, ask whether

sw=A;t(pt)";sw=B # 0 (drop).

> prefix sw = A filters out packets not at A

» suffix sw = B filters out packets not at B

Other Applications

forwarding loops
traffic isolation

access control

vV v v v

correctness of a compiler that maps a NetKAT expression to a set of
individual flow tables that can be deployed on the switches

Results

Soundness and Completeness [Anderson et al. 14]
» - p=gqifand only if [p] = [q]

Decision Procedure [Foster et al. 15]

NetKAT coalgebra
Efficient bisimulation-based decision procedure
Implementation in OCaml

vV v v v

Deployed in the Frenetic suite of network management tools

A Bisimulation-Based Algorithm

To check e; = e, convert to automata, check bisimilarity
» exploits a sparse matrix representation

» Hopcroft-Karp union-find data structure to represent bisimilarity
classes

» BDDs to represent tests (new — based on Pous, POPL 15)
> algorithm is competitive with state of the art

A Bisimulation-Based Algorithm [Foster & al. 15]

» Topology Zoo

> 261 real-world network topologies;
> Use shortest path forwarding as network program;

> Results:
Connectivity Loop Freedom Translation Validation
10000 : 100000
10000 LR
= B 1000 . ;::{V
g g 100 ¥
= = oy
10 .
1 1 1
1000 10000 100000 1000 10000 100000 1000 10000 100001

Policy Size Policy Size Policy Size

A Bisimulation-Based Algorithm [Foster & al. 15]

» Topology Zoo

> 261 real-world network topologies;

> Use shortest path forwarding as network program;

> Results:

10000

Time (s)

» Stanford Campus Network

> Use actual router configurations

Connectivity

10000
Policy Size

100000

Loop Freedom

Translation Validation

10000

Policy Size

100000

100000 :
10000 LR
Z 1000 . .-‘.:{V
3} T
£ 100 . aﬁ,‘fp
= 1
10 Ji"k
PP
1000 10000 100001
Policy Size

> Results: Point to point reachability in 0.67s (vs 13s for HSA)

Probabilistic NetKAT

» How much congestion is there?
» Is the network resilient under failure?

» Reducing costs without compromising reliability

Probabilistic NetKAT

» How much congestion is there?

> Is the network resilient under failure?

» Reducing costs without compromising reliability

» Modular extension of NetKAT with probabilistic constructs
» Compositional semantics

» Compiler, Decision procedures, ...

Compositional quantitative reasoning ~- fully realize the vision of SDN

ProbNetKAT

10% probability of failure of the link
51 — S, topology t encoded as:

t =(sw = S1; pt = 2;((sw < Sy; pt < 1) @ .o drop))
& (sw = Sy; pt = 3;sw « S3; pt + 1)
& (sw = Sy; pt = 4; sw < Su; pt + 2)
& (sw = S3; pt = 4;sw + Sy; pt + 3).

ProbNetKAT

10% probability of failure of the link
51 — S, topology t encoded as:

t =(sw = S1; pt = 2;((sw < Sy; pt < 1) @ .o drop))
& (sw = S;1; pt =3;sw + S3;pt + 1)
& (sw = Sy; pt = 4; sw < S4; pt + 2)
& (sw = S3; pt = 4;sw + Sy; pt + 3).

Semantics in terms of Markov Kernels.

Conclusion

» Programming languages have a key role to play in emerging
platforms for managing software-defined networks

> NetKAT is a high-level language for programming and reasoning
about network behavior in the SDN paradigm

>

>

formal denotational semantics, complete deductive system
efficient bisimulation-based decision procedure

» Future work:

>

vvyYVvVYy

further optimizations to reduce state space
generating proof artifacts

refinement calculus

concurrent/distributed NetKAT

Many opportunities for the concurrency community!

Bridges

» Abstraction can bring new perspectives and solutions
» Transference of techniques is a two-way street

» Solid foundations are crucial for new paradigms

N

For papers and code, please visit:
http://frenetic-lang.org/

Thanks!

