Automatic Application Deployment
in the Cloud:
from Practice to Theory and Back

Gianluigi Zavattaro University of Bologna - Italy
FOCUS research team INRIA - France

Based on joint work with:
T.A. Lascu, J. Mauro Univ. of Bologna - Italy

R. Di Cosmo, S. Zacchiroli,
J. Zwolakowski
A. Eiche Mandriva SA - France

Univ. Paris Diderot - France

Cloud applications

N

¢ Cloud computing offers the possibility
to build sophisticated software
systems on virtualized infrastructures
at a fraction of the time / cost
necessary just few years ago

¢ We can give a look at Juju to have an
idea of how cloud applications can @
be easily deployed nowadays
Juu

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Cloud application management
IS any way a complex task

N

¢ Even if tool-supported, the cloud
application operator must decide:

= Which software components to select
= the overall application architecture
= the order of the configuration actions

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

The challenge

N

¢ Understand how much of the operator’s
activities can be automatised:

= Selection of the software components
(selected from appropriate repositories)

= synthesis of the overall architecture

= planning of the configuration actions to be
executed to realize the expected architecture

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Our current “practical” results

¢ Definition of a language for describing
component’s repositories

{ { {
"states": ["provide": {}, "provide": {
{ "require": { "@Wordpress/ActiveWithNfs/get website": 1000
"provide": {}, "@Haproxy/Active/add database": 1 },
"require": {}, Y "require": {
"initial": true, "successors": ["@Haproxy/Active/add_database": 1,
"name": "Installed", "Active" "@Httpd/Active/start": 1,
"successors": [1, "@Httpd/Configured/get_document root": 1,
"Template" "name": "Configured" "@Nfs_client/Active/mount": 1
] }l }I
Y, "name": "ActiveWithNfs"
{ "provide": {}, }
"provide": {}, "require": { 1,
"require": {}, "@Haproxy/Active/add database": 1, "name": "Wordpress"
"successors": ["@Httpd/Active/start": 1, }
"Configured" "@Httpd/Configured/get_document_root": 1
1, T
"name": "Template" "successors": [
Y, "ActiveWithNfs"

1

"name": "Active"

I

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Our current “practical” results

¢ Definition of a language for describing
component’s repositories

—g@ @Wordpress/ActiveWithNfs/get_website
c @Nfs_client/Active/mount

"; —c @Httpd/Active/start
_c @Hittpd/Configured/get_document_root

X L—c @Haproxy/Active/add_database

Legend

D Component
O State

Initial State

= Require Port

worapress

Automatic Application Deployment in the Cloud

@— Provide Port

CONCUR'15

- 1.9.2015

III

results

Our current “practica

N

¢ Realization of a tool for component'’s
selection and architecture synthesis

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

III

results

N

Our current “practica

¢ Realization of a tool for component'’s

selection and architecture synthesis
MBS Hipd Hitpd MBSNFScu....

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

III

Our current “practical” results

N

Realization of a tool for planning the
configuration actions to be executed

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Structure of the talk

N

+ Formalizing the deployment problem
Decidability/complexity results

+ Fully automatic deployment
(without capacity constraints and conflicts)

¢ Constraints and conflicts strike back
Conclusion and Open issues
¢ Related work

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Component types

¢ A component has provide and require ports
¢ A component has an internal state machine

¢ Ports are active or inactive according to the
current internal state

Require

Provide ports

ports

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Example:
the Wordpress component type

@Wordpress/ActiveWithNfs/get_website
@Nfs_client/Active/mount

@Httpd/Active/start

@Httpd/Configured/get_document_root

@Haproxy/Active/add_database

== Require Port
@— Provide Port
worapress

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Conflicts

¢ Conflic

(S adle €X

= The apache we
the lighttpd we

httpd

Automatic Application Deployment in the Cloud

bressed as special ports
0 server is in conflict with

D Server

lighttpd

uninst

apache2

CONCUR'15 - 1.9.2015

Capacity constraints

¢ Provide (resp. require) ports could have
an associated upper (resp. lower)
bound to the number of connections

wordpress =3
._D_m§sql
=2 wordpress <2
loadbalancer wordpress my:ql_D

varnish mysql

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Configurations

¢ Component instances, with a current
state, and complementary provide/require
ports connected by bindings

= Example: Kerberos with Idap support in
Debian (example of circular dependency)

normal

libldap2-dev normal

libldap2-dev
*.. |ibkrb5-dev
5 *ﬁk

libkrb5-dev

uninst

openldap
uninst

krb5
Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Configurations

+ Component instances, with a current

state, and complementary provide/require

ports connected by bindings _ ..
m\ysql

_?2 mysql 3 mysq
loadbalancer wordpress c_.—
wordpress mysql

varnish mg?e; _mg':ql s
(o—
wordpress mysal

mysql

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Formalizing the
“deployment” problem

» Definition 1 (Component type). The set I' of component types of the Aeolus model, ranged

over by 71,72, ... contains 5-ple (Q, qo, T, P, D) where:

m () is a finite set of states;

= go € Q is the initial state and 7" C @ x @ is the set of transitions;

= P = (P,R), with P,R C Z, is a pair composed of the set of provide and the set of
require-ports, respectively;

= D is a function from @ to 2-ple in (P -+ NI) x (R - N).

» Definition 2 (Configuration). A configuration C is a quadruple (U, Z, S, B) where:

= U C I is the finite universe of all available component types:

m Z C Z is the set of the currently deployed components;

= S is the component state description, i.e., a function that associates to components in Z
a pair (T, q) where T € U is a component type (@, qo, T, P, D), and q € Q is the current
component state;

wm B C 1 x Z x Z is the set of bindings, namely 3-ples composed by an interface, the
component that requires that interface, and the component that provides it; we assume
that the two components are distinct.

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Formalizing the
“deployment” problem

» Definition 5 (Actions). The set A contains the following actions:

stateChange(z, q1,q2) where z € Z: change the state of the component z from g; to ga;
bind(r, z1,z9) Where z1, 29 € Z and r € Z: add a binding between z; and z, on port 7;
unbind(r, z1, z2) where z1, 29 € Z and r € Z: remove the specified binding;

new(z : T) where z € Z and 7T is a component type: add a new component z of type T;
del(z) where z € Z: remove the component z from the configuration.

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Formalizing the
“deployment” problem

N

» Definition 6 (Reconfigurations). Reconfigurations are denoted by transitions C s C’
meaning that the execution of @ € A on the configuration C produces a new configuration
C’. The transitions from a configuration C = (U, Z, S, B) are defined as follows:

stateChange(z,q1,92) .

/ .
¢ » (U, Z,5', B) ¢ 21y 7 U1z}, S, B)
if C[z].state = ¢4 if2¢Z, TeU

and (q1,q2) € C|z].trans (T, T.init) if2' =z

and §'(z') = { (C[z].type,lh) if 2/ =2 and §'(z') = { ClZ] otherwise

C[Z'] otherwise

¢ 2%, w,z\ {2},5, B

bind(r,z1,29) I 1 if 2/ =2z
¢ — (U’ Z,5,BU <T’ Zl’z2)) if 5(=) = { C[2'] otherwise
if (r,z1,22) € B and B’ = {(r,z1,29) € B |z & {z1,22}}

and r € C[z1].req N C[z2].prov

unbind(r,z1 ,22)\

C » (U, Z,S,B \ (r,z1,22)) if (r,z1,22) € B

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

“Deployment” problem

¢ Input:
= A set of component types (called Universe)

= One target component type-state pair ™0
¢ Output: =1
i _ wordpress | -
= Yes, if there exists a deployment plan
= No, otherwise

Deployment plan: target
a sequence of actions leading to a final configuration
containing at least one component of the given target
type, in the given target state

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Deployment problem:
example

Consider the problem of installing
kerberos with Idap support in Debian

= Universe: packages krb5 and openldap
= Target: krb5 in normal state

normal

libldap2-dev normal

libldap2-dev

*~._ hibkrb5-dev
—Q

libkrb5-dev

uninst

openldap

uninst

krb5
Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Deployment problem:
example

+ Deployment plan:

new (k:krb5) ,new(o:openldap),

stateChange (k,uninst,stagel),

bind (libkrb5-dev,o0,k) ,stateChange (o,uninst,normal),
bind (libldap2-dev,k,0),

stateChange (k,stagel,normal)

normal
k 0 9 libldap2-dev O normal
--------- +F ~a
. libldap2-dev
*~._ hibkrb5-dev
‘ —Q
libkrb5-dev
uninst
openldap

uninst

krb5
Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Structure of the talk

N

+ Formalizing the deployment problem
+ Decidability/complexity results

+ Fully automatic deployment
(without capacity constraints and conflicts)

¢ Constraints and conflicts strike back
Conclusion and Open issues
¢ Related work

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Summary of
decidability/complexity results

Component model Deployment is

Full component model Undecidable
[SEFM12]

No capacity constraints Ackermann-hard
[ICALP13,I&C14]

No capacity constraints, Quadratic
No conflicts [SEFM12]

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Quadratic algorithm without
constraints and conflicts [sermi12]

+ Forward reachability algorithm
= all reachable states computed by saturation

Algorithm 1 Checking achievability in the Aeolus™ model

function ACHIEVABILITY (U, T, q)
absConf = {(T',T".init) | T' € U}

provPort := U<7- /) EabsCo W 1dom(T . P(q'))}
repeat
(¢"

new := {(T',¢') | (T",q") € absConf,(¢",q) € T .trans}\ absConf
newPort := U7 s enewtdom(T".P(¢))
while I(77,¢') € new . dom(T'.R(q"))
new := new \ {{T",¢')}
newPort == 7 i enewidom(T . P(q))}
end while
absConf := absConf U new
provPort := provPort U newPort
until new = ()

if (T,q) € absConf then return true

q",
}
Z

provPort U newPort do

else return false
end if
end function

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Example:
the kerberos case-study

normal libldap2-dev normal
—(C libldap2-dev]
libkrb5-dev
libkrb5-dev
winst_ | Tnitial states
openldap
unins
krb5 krb5,uninst openldap,uninst
New states
A” krb5,stagel krb5,uninst openldap,uninst
reaChabIe krb5,stagel krb5,uninst openldap,uninst | | openldap,normal
states ;
——
krb5,norma|-‘ krb5,stagel krb5,uninst openldap,uninst openldap,normal

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Lesson learned from the
foundational study

Deployment can be reasonably fully
automatised if we do not consider
capacity constraints and conflicts

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Structure of the talk

N

+ Formalizing the deployment problem
Decidability/complexity results

¢ Fully automatic deployment
(without capacity constraints and conflicts)

¢ Constraints and conflicts strike back
Conclusion and Open issues
¢ Related work

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Fully automated deployment
(no capacity, no conflicts) [ICTAI13]

¢ Use the graph of the reachability algorithm
bottom-up from the target state

= Select the bindings (red arrows)
= Select the predecessors (black arrows)

krb5,uninst openldap,uninst

krb5,stagel openldap,uninst
<

—

T == =« — _libkrb5-dev

krb5,stagel openldap,normal
— _—*

libldap2-dev _ . a == =

krb5,normal

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Fully automated deployment
(no capacity, no conflicts) [ICTAI13]

krb5,uninst openlda:p,uninst ‘ Generate an
o], abstract plan

— e— e e—— -

Topenazoromnat] - (ONE COMpoNent
prepouten | s e pr——. for each maximal
path)
Time | zeuninst w,€,uninst
! ; Arrows represent a
zuninst,stagel 4w, uninst,normal :
. precedence relation:
p— L — blue: start requirement
s cex red: end requirement
y 7/
z,normale =7

~ libldap2-dev

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Fully automated deployment
(no capacity, no conflicts) [ICTAI13]

+ Plan as a topological visit until target:

new (k:krb5) ,new(o:openldap),
stateChange (k,uninst,stagel),

bind (libkrb5-dev,o0,k) ,stateChange (o,uninst,normal),

bind (libldap2-dev,k,0),

stateChange (k,stagel ,normal)

T|me z,€,uninst

I

w,€,uninst

z,uninst,stagel

libkrb5-dev

:

y

w,uninst,normal

ibldap2-dev

z,stagel,normal

—
libkrB5-dev
7

A 4

w,normal,g

z,normal,e

/
-

=~ libldap2-dev

Automatic Application Deployment in the Cloud

Arrows represent a

precedence relation:
blue: start requirement
red: end requirement

CONCUR'15 - 1.9.2015

Fully automated deployment
(no capacity, no conflicts) [ICTAI13]
¢ Problem:
cycles could forbid the topological visit

¢ Example: krb5 in normal requires an
openldap in uninst state

normal :
libldap2-dev normal
C libldap2-dev|
“~.. Jiibkrbs-dev
—O
libkrb5-dev
: @1 uninst
N uninst
—(openldap
. uninst
uninst
krb5

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Fully automated deployment
(no capacity, no conflicts)

normal

[ICTAI13]

¢ The target state
cannot be visited!

libldap2-dev normal
C libldap2-dev]
*s.. |libkrbs-dev
libkrb5-dev
@1 uninst
uninst
openldap
uninst
Z,€,uninst

;

libkrb5-dev

z,uninst,stagel

I

uninst

-
)

z,stagel,normal
libldap2-dev
I undhst
-~
-
z,normal,e e ‘ling

Automatic Application Deployment in the Cloud

w,€,uninst

:

)

w,uninst,normal

P

v ,normal,e

yd
m"bkrbs-dév)‘
” 7

”

/7

Zlibldap2-dev
-

CONCUR'15 - 1.9.2015

Fully automated deployment

normal

libldap2-dev

—(

*s.. |libkrbs-dev

libldap2-dev

normal

(no capacity, no conflicts)

[ICTAI13]

+ Solution: component
duplication

libkrb5-dev ,
@1 uninst
s uninst
—(. openldap
uninst
uninst
krb5
Z,€,uninst w,€,uninst y,€,uninst
l libkrb5-dev l l
. . inst .
z,uninst,stagel w,uninst,normal Hnins y,uninst,e
l / /
z,stagelynormal w,normaljé /
libldap2-dev 7
T | I|b|dap2-dev/ _ 7 uninst
libkrbS5«d&v ' -
z,normal,e == - 7

Automatic Application Deployment in the Cloud

CONCUR'15 - 1.9.2015

Structure of the talk

N

+ Formalizing the deployment problem
Decidability/complexity results

+ Fully automatic deployment
(without capacity constraints and conflicts)

¢ Constraints and conflicts strike back
Conclusion and Open issues
+ Related work

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Capacity constraints and
conflicts strike back [asei14,coNcur1s]

N

+ We have investigated the problem of
synthesising the final configuration

= considering capacity constraints and
conflicts but...

= ...abstracting away from the internal
configuration automata

¢ Idea for computing the final configuration:
= first perform component selection...
= ...and then establish the bindings

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

N

Component selection [coNcur15]

'« Component selection is NP-complete but

we can use Contraint Solving technology
A\ TR@®) x comp((T,q)) < > bind(p,(T",4),(T,4))

pel (T,q) (T".9")

A A T.P(q)(p) x comp((T,q)) > » _ bind(p,(T,q),(T",q))
peEL (T,q) - T-P(q)(p)<oo (T".q")

A A comp((T,q)) =0 = > bind(p,(T,q),(T",q) =0
pel (TaQ) . 'TP(q)(p):oo (T',Q'>

A A comp((T',q)) < 1

p€EZ (T, - T-R(q)(p)=0 A
T.P(q)(p)>0)

/\ /\ /\ comp({T,q)) >0 = comp({(T",q')) =0

peL (T,q)- (T",a")#(T ,q) .
T.-R(q)(p)=0 T'.P(q")(p)>0

A A A pind®.(T,),(T",q)) < comp((Tq)) x comp(T",4))

reL (T,q) (T',¢")#(T,q)

A /\ bind(,(T,q),(T,q)) < comp((T,q)) x (comp((T’q)) — 1)

pEL (T,q)
Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Bindings establishment [concuris)

+ Bindings decided as solution
of a max-flow problem

Automatic Application Deployment in the Cloud

Structure of the talk

N

+ Formalizing the deployment problem
Decidability/complexity results

+ Fully automatic deployment
(without capacity constraints and conflicts)

¢ Constraints and conflicts strike back
¢ Conclusion and Open issues
¢ Related work

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Putting everything together:
Aeolus Blender [ICSOC1

Armonic

f\\

of components

- »
¢ Armonic: library \—[BW

. 101100,
onfig|data |5%5°"

5]9}

L

¢ Zephyrus: spefeaton
synthesis of the [P
final architecture { Zephyrus j g
¢ Metis: plan the ‘, [vomerge]

configuration E Metis Jﬁ‘[Filler J

actions [Pin Config fie [

Launcher
Automatic Application Deployment in the Cloud

Reconfiguration vs.
Deployment

N

¢+ Reconfiguration problem:

= Same as deployment,
but with non empty initial configuration

= reconfiguration is already PSpace-complete
without capacity constraints and conflicts
[MFCS15]

¢+ Open issue:

= Find further restrictions to the model that

make reconfiguration tractable
(seems very useful in practice)

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Other open issues

N

¢ In real systems there is a flow of
configuration data among components:

= Room for name-passing models?
Hierarchical modeling

(administrative domains, cloud
providers, geographical areas, ...):

= Room for ambient-like models?

¢ QoS and resource consumption:
= Room for quantitative models?

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Structure of the talk

N

+ Formalizing the deployment problem
Decidability/complexity results

+ Fully automatic deployment
(without capacity constraints and conflicts)

¢ Constraints and conflicts strike back
Conclusion and Open issues
¢ Related work

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Related work
Jo TOSCA

N

= Language for topologies and deployment plans

| —

f—%

PHP Container

p Call Y Connection
Web Shop (HTTP Call) Product REST API (JDBC Connection)
(PHP Application) (WAR)
|

[OASIS standard 2013]

Servlet Container Product Database

=3l

]

(Apache PHP Module) (Tomcat) (MySQL Database)
. J \ -
- Deploy PHP
p 4 < i §) Install Configure Install Apache Module on el;? oy.
f_Y_Y_\ Windows on Windows Web Server Apache Web Application on
Web Server i Server on Windows p PHP Container
Operating System VM Server
(Apache) N
(Windows 7)
~—
i ; install Set REST API
; ns ;
i End| t
: A 4 Tomcat Servlet Gy RE ULty
(—'ﬁ -~ ~ X Tomcat Servlet
X . Container on Container
(WOZeratlr;%ggs;em : Virtual Server Acquire (Windows VM
indows erver, AWS EC2 Server,
L ()) Windows VM Set Database

S —

r+\

Server

(IBM Z Series)
-

wveyp (hOStedON)

Automatic Application Deployment in the Cloud

on EC2 Endpoint

Install MySQL
Database on
Windows VM

CONCUR'15 - 1.9.2015

Related work
¢ CloudMF

= Similar language for component description
{ o .

"id" : "SensApp",

[J.Ferry et al. - NordiCloud13]

"retrieval" : "wget -P ~ http://cloudml.org/SensApp.
war; wget —-P ~ http://cloudml.org/startsensapp.
sh ; wget -P ~ http://cloudml.org/deploysensapp.

Sh",
"deployment" : "deploysensapp.sh",
"start" : "startsensapp.sh",
"requires" : [
{ "id" : "JettyCapability", "isOptional"
{ "id" : "MongoDBCapability", "isOptional"
}
1,
"inputs" : [
{
"id" : "RESTChannel",
"portNumber" : "8080",
"isRemote" : true

}
1,
"provides" : [
{
"id" : "RESTServer",
"portNumber" : "8080"

]
}

Automatic Application Deployment in the Cloud

false 1},
false

unin:

O

erase

Final

Uninstalled

installation fail
install uninstall
Error
Installed
stall
starting error
configure
Configured
error
configure
stop start
Running W
CONCUR'15 - 1.9.2015

Related work

N

¢ ConfSolve [J.A.Hewson, P.Anderson, A.D.Gordon - LISA12]
= Object-oriented language for services and

machines
= Type system for checking configuration
COI‘reCtneSS class DatabaseServer extends Role {
. var role as DatabaseRole;
= Constraint solver for
automatic placement of +-slave oF master

var peer as ref DatabaseServer;

services on machines

// the peer cannot be itself

peer != this;
class Machine {
var os as OperatingSystem; // a master’s peer must be a slave,
var cpus as 1..4; // and a slave’s peer must be a master
var memory as int; role != peer.role;
3 }

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Related work

N
\J

¢ Engage [J.Fischer, R.Majumdar, S.Esmaeilsabzali - PLDI12]

= Architectural specification in terms of
inside / peer / environment relationships

= Automata with resource lifecycle and transient
dependencies

= Assumption on acyclic relationships
(to always guarantee topological visit)

inside v inside

Server
—— [T active]
znszd/) insh install start restart
peers

env eny uninstall stop
Tomcat inside Open MRS [l inactive]

‘v
v v

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

Mentioned publications

N

2

[SEFM12] R. Di Cosmo, S. Zacchiroli, G. Zavattaro.
Towards a Formal Component Model for the Cloud.
Proc. of SEFM’12: 156-171. LNCS 7504, Springer.

[ICALP13] R. Di Cosmo, J. Mauro, S. Zacchiroli, G. Zavattaro.

Component Reconfiguration in the Presence of Conflicts.

Proc. of ICALP’13: 187-198. LNCS 7966, Springer.

[ICTAI13] T. A. Lascu, J. Mauro, G. Zavattaro.

A Planning Tool Supporting the Deployment of Cloud Applications.

Proc. of ICTAI'13: 213-220. IEEE Press.

[I&C14] R. Di Cosmo, J. Mauro, S. Zacchiroli, G. Zavattaro.

Aeolus: A component model for the cloud.

Information and Computation, 239: 100-121 (2014).

[MFCS15] J. Mauro, G. Zavattaro.

On the Complexity of Reconfiguration in Systems with Legacy Components.

Proc. of MFCS'15: 382-393. LNCS 9234, Springer.

[ASE14] R. Di Cosmo, M. Lienhardt, R. Treinen, S. Zacchiroli, J. Zwolakowski, A. Eiche, A. Agahi.
Automated synthesis and deployment of cloud applications.

Proc. of ASE'14: 211-222. ACM Press.

[ICSOC15] R. Di Cosmo, A. Eiche, J. Mauro, S. Zacchiroli, G. Zavattaro, J. Zwolakowski.
Automatic Deployment of Services in the Cloud with Aeolus Blender.

Proc. of ICSOC'15, to appear, Springer.

Automatic Application Deployment in the Cloud CONCUR'15 - 1.9.2015

