
Submitted to:
Foclasa 2015

c© A. Cherif, A. Imine
This work is licensed under the
Creative Commons Attribution License.

A Constraint-based Approach for Generating
Transformation Patterns

Asma Cherif
Umm Al-Qura University

Makkah, Saudi Arabia
ahcherif@mail.uqu.edu.sa

Abdessamad Imine
Lorraine Univeristy and Inria Nancy Grand-Est

Nancy, France
imine@loria.fr

Undoing operations is an indispensable feature for many collaborative applications mainly collab-
orative editors. It provides the ability to restore a correct state of the shared data after erroneous
operations. In particular, selective undo allows users to undo any operation and is based on rear-
ranging operations in the history using the Operational Transformation (OT) approach which is an
optimistic replication technique. OT allows many users to concurrently update the shared data and
exchange their updates in any order. To ensure the consistency of all replicas, OT enforces out-of-
order execution of concurrent updates using transformation functions that must have been planned in
advance. For preserving the data consistency, it is a challenging task how to meaningfully combine
OT and undo approaches since undoing operations that are received and executed out-of-order at
different collaborating sites inevitably leads to divergence cases. Even though various undo solutions
have been proposed over the recent years, they are either limited or erroneous.

In this paper, we propose a constraint-based approach to address the undo problem that is for-
mulated as a Constraint Satisfaction Problem (CSP). By using CSP approach, we are able to analyze
all covered transformation cases for coordinating collaborative objects with finite size of operations.
This allows to devise undoable transformation patterns which considerably simplifies the design of
collaborative objects. We also study the relation between the commutativity and the undoability
which enables us to state a very important theoretical result. Indeed, we prove that commutativity is
necessary and sufficient to achieve undoability for small set of operations (of sizes 2 and 4) and only
sufficient otherwise. This work represents a step forward toward a practical use of CSP techniques
for designing safe OT-based collaborative applications.

Keywords: Collaborative Applications, Selective Undo, Operational Transformation (OT), Constraint
Satisfaction Problem (CSP).

1 Introduction

Motivation. Nowadays, collaborative applications are becoming more widespread due to the powerful
evolution of networks and their services. For instance, collaborative editors (e.g. Google Docs) allow
several and dispersed users to simultaneously cooperate with each other in order to manipulate a shared
object (e.g. a multimedia document). To ensure availability of data as well as high local responsiveness,
these applications resort to replicating shared objects. So, the updates are applied in different orders at
different replicas of the object. This potentially leads to divergent (or different) replicas, an undesirable
situation for collaborative applications. Operational Transformation (OT) is an optimistic technique
which has been proposed to overcome the divergence problem [6, 20]. It enforces to some extent the
commutativity between conflicting operations without using roll-back but by using transformations that
must have been planned in advance. Indeed, OT approach consists of application-dependent transforma-
tion algorithm IT (op1,op2) to compute the transformation of operation op1 which is a new variant of

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Constraint-based Approach for Generating Transformation Patterns

op1 that will be executed after operation op2. Thus, for every possible pair of concurrent operations, the
application programmer has to define in advance how to merge these operations regardless of execution
order. To ensure the convergence of all replicas, a transformation algorithm requires to satisfy two trans-
formation properties [15], namely TP1 and TP2 (see Section 2.1). OT is used in many collaborative
editors including Joint Emacs [15], CoWord [22], CoPowerPoint [22], the Google Wave 1, and Google
Docs 2.

Undoing operations is an indispensable feature for many collaborative applications mainly real time
collaborative editors. It provides the ability to restore a correct state of the shared data after erroneous
operations. In particular, selective undo consists in undoing any operation from the local history of
operations performed locally or received from remote sites. It is especially required for maintaining
convergence in access control-based collaborative editors [4, 5]. Indeed, in collaborative applications,
operations are received out-of-order at different collaborating sites. Thus undoing an illegal operation
at one site may necessitate to undo it in a different form (i.e. its transformation form) at another ac-
cording to its reception order. To correctly undo operations, three inverse properties namely IP1, IP2
and IP3 [7, 13, 19, 23] were proposed (see Section 2.2). Combining OT and undo approaches while
preserving data convergence remains an open and challenging issue since many divergence cases may
be encountered when undoing operations. Even though many solutions were proposed over the recent
years, designing undo schemes in collaborative applications is a hard task since each proposed solu-
tion has either a limitation (i.e. it relaxes some constraints at the expense of system performance) or a
counterexample showing it is not correct [16, 23].

Contribution. In this paper, we present a theoretical study of the undoability problem in collaborative
applications. For any shared object with a set of primitive operations, we provide a formal model to
investigate the existence of convergent transformation functions satisfying inverse properties. As ap-
proaching these transformation functions turns out to be combinatorial in nature, we resort to constraint
programming to formalize the undoability problem as a Constraint Satisfaction Problem (CSP). Thus,
we define a collaborative application as a shared object whose state must satisfy both transformation
and inverse properties. We use our model to devise transformation patterns that guarantee both the con-
vergence of shared data and the correctness of the undo approach. Furthermore, we study the relation
between undoability and commutativity. Yet the OT approach was proposed to go beyond the commuta-
tivity, we prove that commutativity is necessary and sufficient to correctly undo operations in consistent
objects of size 2 and 4 and only sufficient otherwise.

Outline. The paper is organized as follows: in Section 2, we present OT approach by describing how
to do and undo user updates. Section 3 describes our formal model and shows how we formulate the
undoability as a CSP. In Section 4, we study the undoable transformation functions provided by our
solver. Section 5 discusses our results. We review related work in Section 6 and conclude the paper with
future research in Section 7.

2 Operational Transformation Approach

To get started, we first present the ingredients of OT approach by describing how to do and undo user
updates in collaborative context.

1http://www.waveprotocol.org/whitepapers/operational-transform
2http://en.wikipedia.org/wiki/Google_Docs

http://www.waveprotocol.org/whitepapers/operational-transform
http://en.wikipedia.org/wiki/Google_Docs

A. Cherif, A. Imine 3

2.1 Doability of Updates

OT is an optimistic replication technique which allows many users (or sites) to generate operations in
order to concurrently modify the shared data and next to coordinate their divergent replicas in order to
obtain the same data [6, 20]. The operations of each site are executed on the local replica immediately
without being blocked or delayed, and then are propagated to other sites to be executed again. Accord-
ingly, every operation is processed in four steps: (i) generation on one site; (ii) broadcast to other sites;
(iii) reception on one site; (iv) execution on one site.

As any distributed application, exchanging operations requires to track relations between these oper-
ations. Two relations are often given in the literature [6, 20]:
Definition 1. (Causality and Concurrency Relations). Let an operation op1 be generated at site i and
an operation op2 be generated at site j. We say that op2 causally depends on op1, denoted op1→ op2,
iff: (i) i = j and op1 was generated before op2; or, (ii) i 6= j and the execution of op1 at site j has
happened before the generation of op2. Two operations op1 and op2 are said to be concurrent, denoted
by op1 ‖ op2, iff neither op1→ op2 nor op2→ op1.

As a long established convention in OT-based collaborative applications [6, 21] , the timestamp vec-
tors are used to determine the causality and concurrency relations between operations. Due to high com-
munication latencies in wide-area and mobile wireless networks the replication of collaborative objects
is commonly used in distributed collaborative systems. But this choice is not without problem. Indeed,
one of the significant issues when building collaborative editors with a replicated architecture and an
arbitrary communication of messages between users is the consistency maintenance (or convergence) of
all replicas. To illustrate this problem, we give the following example:

Example 1. Consider a shared binary register where two primitive operations modify the state of a bite
from 0 to 1 and vice versa: (i) U p to turn on the register; (ii) Down to turn off the register. Suppose that
this shared register is manipulated concurrently by two users, as depicted in Figure 1(a). Initially, both
copies of the shared register contain 0. User 1 executes operation op1 =U p to turn the local state to 1.
Concurrently, user 2 performs op2 = Down. When op1 is received and executed on site 2, it produces
the expected state 1. But, at site 1, op2 does not take into account that op1 has been executed before it
and it produces the state 0. Thus, the final state at site 1 is different from that of site 2.

site 1
0

site 2
0

op1 =U p

##

op2 = Down

{{
1 0

Down U p

0 1

(a) Incorrect integration.

site 1
0

site 2
0

op1 =U p

''

op2 = Down

ww
1 0

IT (op2,op1) =U p IT (op1,op2) =U p

1 1

(b) Correct integration.

Figure 1: Serialization of concurrent updates

To maintain convergence, a serialization by transformation can be used. When user 1 gets an
operation op that was previously executed by user 2 on his replica of the shared object, user 1 does
not necessarily integrate op by executing it “as is” on his replica. He will rather execute a variant
of op, denoted by op′ (called a transformation of op) that intuitively intends to achieve the same
effect as op. To do this, OT has been proposed to provide application-dependent transformation

4 A Constraint-based Approach for Generating Transformation Patterns

algorithm called Inclusion Transformation IT such that for every possible pair of concurrent operations,
the application programmer has to specify how to merge these operations regardless of reception
order [6, 20, 21]. For instance the following transformation function gives transformation cases for the
set operations {U p,Down} (given in Example 1) performed concurrently to alter a shared binary register.

ITbin(op1,op2) : op′1
Choice of op1 and op2

Case (op1 =U p and op2 =U p):
op′1←U p

Case (op1 =U p and op2 = Down):
op′1←U p

Case (op1 = down and op2 =U p):
op′1←U p

Case (op1 = Down and op2 = Down):
op′1← Down

End

In the following, we show how to correctly merge operations using the previous algorithm.
Example 2. In Figure 1(b), we illustrate the effect of IT on the previous example. At site 1, op2 needs to
be transformed in order to include the effects of op1: op′2 = IT (Down,U p) =U p. The operation Down
is transformed to U p since another U p was concurrently generated.
OT Properties. OT approach requires that every site stores all executed operations in a buffer also called
a log. A log is a sequence of operations buffered at their execution order. Notation op1 · op2 · . . . · opn

represents the operation sequence of n operations. By abuse of notation, we denote by st ·X = st ′ the
operation (or an operation sequence) X that is executed on a replica state st and produces a replica state
st ′. We can define an equivalence relation between operation sequences as follows:
Definition 2. (Equivalence between sequences of operations). Two sequences seq1 and seq2 are equiv-
alent , denoted by seq1 ≡ seq2, iff seq1 and seq2 produce the same state, i.e. st · seq1 = st · seq2 for every
state st.

Transforming any operation op against a sequence of operations seq is denoted by IT ∗(op,seq) and
is recursively defined as follows:
• IT ∗(op, /0) = op where /0 is the empty sequence;
• IT ∗(op,op1 ·op2 · . . . ·opn) = IT ∗(IT (op,op1),op2 · . . . ·opn)

We say that op has been concurrently generated according to all operations of seq.
To ensure the convergence of all replicas, a transformation algorithm requires to satisfy two proper-

ties [15, 19], called transformation properties.
Definition 3. (Transformation properties). Let IT be an inclusion transformation function. For all
op1, op2 and op3 pairwise concurrent operations, IT is correct iff the following properties are satisfied:
• Property TP1: st ·op1 · IT (op2,op1) = st ·op2 · IT (op1,op2), for every state st.

• Property TP2: IT ∗(op3,op1 · IT (op2,op1)) = IT ∗(op3,op2 · IT (op1,op2)).
TP1 defines a state identity and ensures that if op1 and op2 are concurrent, the effect of executing

op1 before op2 is the same as executing op2 before op1. This condition is necessary but not sufficient
when the number of concurrent operations is greater than two. As for TP2, it ensures that transforming
op3 against equivalent operation sequences results in the same operation.

Properties TP1 and TP2 are sufficient to ensure the convergence for any number of concurrent oper-
ations which can be executed in arbitrary order [11, 15]. Moreover, based on transformation properties,
we can reorder operations in a sequence without altering the resulting state of the original sequence
which is very useful for undoing concurrent operations.

In the following, we say that a transformation function IT is correct if it verifies both properties TP1
and TP2. For instance, the function ITbin presented earlier is correct since it verifies both properties.

A. Cherif, A. Imine 5

2.2 Undoability of Updates

The ability to undo operations performed by a user is a very useful feature allowing to reverse erroneous
operations. Thus, it is possible to restore a previous convergent state without being obliged to redo all
the work performed on a document. The selective undo mechanism allows for maintaining convergence
in access control-based collaborative editors [4]. Indeed, in such applications any operation may be dy-
namically revoked even if it is already executed. So, enforcing a dynamic access control policy requires
to selectively undo operations from a given log. This approach is based on rearranging operations in the
history using the OT approach. Consequently, it is primordial to log all executed operations to accom-
plish an undo scheme. Furthermore, all operations should be undoable. For this, we suppose that each
operation op has an inverse denoted by op. As proposed in [13, 19], to selectively undo operation opi

from a given log say L = op1 ·op2 · . . . ·opi · . . . ·opn, we proceed by the following consecutive steps as
illustrated in Figure 2:

(1) Find opi in L;
(2) Mark opi as an undone operation: op∗i ;
(3) Generate opi;
(4) Calculate op′ = IT ∗(opi,opi+1 · . . . · opn) that integrates the effect of the sequence following opi in

L;
(5) Exclude3 the effect of opi from the log by including the effect of opi inside the sequence opi+1 · . . . ·

opn (i.e. the sequence following op∗i). The resulting sequence is then op′i+1 · . . . ·op′n;
(6) Execute op′. L L′ (after undo)

op1 op1

op2 op2

...
...

opi−1 opi−1

(1) opi ≡ op∗i (2)

(3) opi

IT

��

opi+1 op′i+1

...
(5)

opn op′n

(4) opi
′

Figure 2: Undo Scheme.
Finally, the sequence L ·opi

′ should be equivalent to L′ so that the undoability is correct.

Undo Properties. Three inverse properties IP1, IP2 and IP3, have been proposed in the literature [7,13,
19, 23] to formalize the correctness of a transformation-based undo scheme.

Definition 4 (Inverse Property 1 (IP1)). Given any operation op and its inverse op, then: op ·op≡ /0.

Property IP1 means the operation sequence op ·op must not affect the object state and is not related
to transformation functions.

3We can exclude the effect of opi from the sublog opi+1 · . . . ·opn using this small algorithm:
op← opi
for j from i+1 to n do
op′j← IT (op j,op)
op← IT (op,op j)
end for

6 A Constraint-based Approach for Generating Transformation Patterns

Definition 5 (Inverse Property 2 (IP2)). Given a correct transformation function IT and any two opera-
tions op1 and op2 then: IT (IT (op1,op2),op2) = op1.

As the sequence op2 · op2 have no effect, property IP2 means transforming op1 against op2 and its
inverse op2 must result in the same operation.

Definition 6 (Inverse Property 3 (IP3)). Given a transformation function IT and any two concurrent
operations op1 and op2 with op′1 = IT (op1,op2) and op′2 = IT (op2,op1). If sequences op1 · op′2 ≡
op2 ·op′1 then IT (op1,op′2) = IT (op1,op2).

Property IP3 means that the operation executed to undo op1 in op1 ·op′2 is the same as the operation
executed to undo it transformed form op′1 in op2 ·op′1.

The violation of one of the previous three properties, leads to divergence situations referred to as
puzzles. This is due to the fact that even though the considered transformation functions are correct
(i.e., they satisfy the transformation properties TP1 and TP2) they are not sufficient to preserve the
data convergence when undoing operations. Puzzles are subtle but characteristic scenarios allowing to
conceive a correct undo solution. All known undo puzzles are due to the violation of IP2 or IP3 by
transformation functions. For instance, in group editors, trying to identify and solve various puzzles has
been a major stimulus in developing and verifying various novel collaborative editing techniques [14,18,
20]. The ability to solve identified undo puzzles is a necessary condition and an important indicator of
the soundness of an undo solution.

In general, IP2 violation is discarded by placing the inverse of an undone operation just after it
in the log. The sequence op · op is then marked in order to be ignored when transforming another
operation against it. The violation of IP3 cannot be avoided by such a mechanism and must be fulfilled
by transformation functions in order to always ensure the data convergence. To further illustrate inverse
properties, we present the following examples:

Example 3. Consider a shared integer register altered by two operations Inc() and Dec() which incre-
ments and decrements respectively the register state such as the one is the inverse of the other. A correct
transformation function is defined as IT (opi,op j) = opi for all operations opi,op j in {Inc(),Dec()}.
Note that operation Inc() commutes with Dec(). Obviously, property IP1 is satisfied since we have
Inc() ·Dec()≡ Dec() · Inc()≡ /0.

Furthermore it is easy to verify that IP2 and IP3 are satisfied. On the one hand,
IT (IT (op1,op2),op2) = IT (op1,op2) = op1. Thereby, showing that IP2 is indeed satisfied by the
transformation function. On the other hand, IT (op1, IT (op2,op1)) = IT (op1,op2) = op1. Since
IT (op1,op2) = op1, we deduce that indeed IT (op1, IT (op2,op1)) = IT (op1,op2) for all operations
op1,op2 ∈ {Inc(),Dec()}. Thus, IP3 is fulfilled. In Figure 3(a), we illustrate how IP3 is preserved when
undoing the operation Inc() generated concurrently to Dec(). In this figure, two sites edit concurrently a
shared integer. Initially, both sites have the state 0. Site 1 increments the integer to get the state 1 while
site 2 decrements it and gets the state−1. Every operation is integrated remotely to converge to the state
0. Next, site 1 undoes the operation op1 = Inc(). For this, op1 = Dec() is generated then transformed
against the remote operation op′2 = Dec() which leads to the final state −1. At site 2, undoing Inc()
consists in generating its inverse Dec() which leads to the same state as site 1. Obviously, property
IP3 is preserved and both sites converges to the state −1. Similarly, it is easy to check that IP3 is also
preserved if the operation Dec() were undone.

Example 4. Consider again the shared binary register given in Example 1. Property IP1 is violated since
0 ·Down ·U p = 1 6= 0. As for property IP2, it is violated since IT (IT (Down,Down),U p) =U p 6= Down.
To illustrate the violation of IP3, we consider the Figure 3(b) where we show how to undo op1 in the

A. Cherif, A. Imine 7

Undo(op1)

��

site 1
0

site 2
0

op1 = Dec

��

op1 = Inc

��

op2 = Dec

��
1 -1

op1
′ = Dec

��

op′2 = Dec op′1 = Inc op′1 = Dec

��
0 0

-1 -1

(a) IP3 preservation for a scenario of {Inc(),Dec()}.

Undo(op1)

��

site 1
0

site 2
0

op1 = Down

��

op1 =U p

��

op2 = Down

��
1 0

op1
′ =U p

��

op′2 =U p op′1 =U p op′1 = Down

��
1 1

1 0

(b) IP3 violation by the transformation function ITbin.

Figure 3: IP3 property.

same situation depicted in Figure 1(b). Initially, both collaborating sites have a shared register set to 0.
The sites perform concurrently then exchange the operations op1 =U p and op2 = Down and converge
to the final state 1. Suppose now that the operation op1 is undone at both sites. At site 1, undoing op1
proceeds as follows: (i) generate the inverse of op1 let op1 = Down; (ii) transform op1 against op′2
which results in IT (U p,Down) =U p. Thus, the final state after undoing op1 is 1 at site 1. However, at
site 2, the execution of op′1 = Down at state 1 produces the state 0. Consequently, both copies diverge
due to the violation of IP3 since IT (op1, IT (op2,op1)) 6= IT (op1,op2).

Accordingly, it is easy to show by counterexamples that undoability is not always achieved even
though the transformation function is correct. The question that arises here is how to define a transfor-
mation function that fulfills inverse properties? To answer this question, we propose in the following to
formalize the undoability problem as a CSP.

3 Formalizing the undoability problem

The undoablity problem consists in investigating the existence of transformation functions satisfying
both transformation and inverse properties. In this section, we first provide a formal definition for col-
laborative objects and next, we formulate our undoability problem as a CSP.

3.1 Consistent Collaborative Object (CCO)

We suppose that there are N sites (or users) collaborating on the same shared object replicated at each
site. Every site updates its local copy, executes the update immediately then broadcasts it to other sites.
Before they are executed locally, remote updates are transformed against concurrent operations from the
local log of the receiver site using the IT function in order to integrate their effects.

We formally define a consistent collaborative object as follows:

Definition 7 (Consistent Collaborative Object). A Consistent Collaborative Object (CCO) is a triplet
C = 〈S t,O p, IT 〉 with:

• S t is a countable set of object states (or the space state).
• O p is a countable set of primitive operations executed by the user to modify the object state, such that

each operation op in O p has unique and distinct inverse op∈O p in such a way, applying op followed
by op has no effect.

• IT : O p×O p→ O p is a correct transformation function (i.e., IT satisfies properties TP1 and TP2).

8 A Constraint-based Approach for Generating Transformation Patterns

A CCO is of order n, denoted n-CCO, if the size of O p is equal to n.

According to Definition 7, a CCO has no idle operations (i.e., there is no op ∈ O p such that st ·
op = st for any state st). Indeed, when designing a shared object, a developer provides intuitively only
operations that alter/modify the object state. For her/him, it does not make sense to handle practically idle
operations. In addition that each operation has a unique and distinct (i.e. op 6= op) inverse, all operations
have to satisfy the undo property IP1 (see Definition 4). Moreover, the size of CCO is always even
as each operation is different from its inverse. As seen in previous examples, we can devise consistent
objects (i.e. TP1 and TP2 are satisfied) without idle operations (see Examples 3 and 1). We also exclude
operations equal to their inverses (i.e, op = op) since they are not interesting in practice.

Note that Example 1 is not a CCO since IP1 is violated while it is easy to prove that Example 3 is a
CCO.

A consistent collaborative object is said to be undoable if its transformation function verifies inverse
properties IP2 and IP3 since IP1 is assumed.

Definition 8 (Undoability). A consistent collaborative object C = 〈S t,O p, IT 〉 is undoable iff its trans-
formation function IT satisfies undo properties IP2 and IP3.

In the sequel, all used objects are consistent collaborative objects (see Definition 7).

3.2 CSP Statement

Given a consistent collaborative object C = 〈S t,O p, IT 〉, our undoability problem consists in finding all
transformation functions satisfying inverse properties. However, this task turns out to be a combinatorial
problem. This is why, we propose to formalize the undoability problem as a CSP. Indeed, CSPs [24]
are mathematical problems defined as a set of objects whose state must satisfy a number of constraints.
They represent the entities in a problem as a homogeneous collection of finite constraints over variables,
which is solved by constraint satisfaction methods. CSPs are solved in a reasonable time thanks to the
combination of heuristics and combinatorial search methods. Formally, a CSP is defined as follows:

Definition 9 (CSP). A CSP is defined as a triple 〈X ,D ,C 〉 , where:

• X = {x1, . . . ,xn} is a set of problem variables;
• D = {D1, . . . ,Dn} is set of of domain values for every the variable, i.e. for every k∈ [1;n], xk ∈Dk;

and
• C = {C1, . . . ,Cm} is a set of constraints, where every constraint Ci is in turn a pair 〈Xi,Ri〉

(usually represented as a matrix), where Xi is a tuple of variables and Ri is a set of tuples of
values.

An evaluation of the variables is a function from variables to values, v : X → D . Such an evaluation
satisfies a constraint 〈(Xi1, . . . ,Xin),Ri〉 if (v(Xi1), . . . ,v(Xin)) ∈Ri. A solution is an evaluation that
satisfies all constraints. The set of constraints may also be defined as (i) Arithmetic constraints such as
=, 6=, <, ≤, >, ≥; (ii) Logical constraints such as disjunction, implication, etc.

Inspired by some famous CSP problems such as the eight-queen problem [1,2], we formalize the un-
doability problem using CSP theory. Indeed, the undoability problem could be represented by a square
matrix where rows and columns refer to the operations while their intersection refers to the transforma-
tion result. In the following, we discuss the ingredients of our CSP model.

The set of variables. X is the set of different possible values taken by the operations to
be transformed. Formally, given a CCO C = 〈S t,O p, IT 〉 such that O p = {op1, . . . ,opn},

A. Cherif, A. Imine 9

then X = {IT (opi,op j)| opi, op j ∈ O p}. For instance, if O p = {op1,op2}, then X =
{IT (op1,op1), IT (op1,op2), IT (op2,op1), IT (op2,op2)}. Subsequently, a n-CCO has a set of variables
X of size n2.

The domain. The domain of values is the set of values of each of the variables, i.e. the transformation
result of the IT function for a couple of operations. Obviously, we have D = O p. To simplify our
model, we consider N as the domain of operations. We represent the transformation function IT of a n-
CCO by a square matrix of size n2 such that operations corresponds to the indexes of rows and columns.
The intersection of row i with column j is the evaluation of the transformation function IT (i, j). This
representation has nn2

different possible assignments in the search space which is too large.

The set of constraints. The constraints are the key component in expressing a problem as a CSP. They
are the conditions to be satisfied by the IT function so that an evaluation is true. Thus, constraints
are TP2, IP2 and IP3. We exclude properties TP1 and IP1 since the former cannot be expressed by
mathematical relations between different variables from X , while the latter is assumed.

Practically, it is possible to find useless solutions while verifying both convergence and inverse prop-
erties. For instance, a correct transformation function may just undo the effect of the remote operation
or that of the local operation against which it is transformed, as we will detail in Example 5. Thus, after
synchronizing all operations, all users will loose their updates which is far from being the objective of
OT approach. To illustrate this, let us consider the following example:
Example 5. Let op1 and op2 be two operations over square matrices of order 2 M2,2, such that:

op1 : M2,2 → M2,2
A 7→ 2×t A4

op2 : M2,2 → M2,2

A 7→ 2×
(

a0,1 a0,0
a1,0 a1,1

)
Consider the set of operations O p = {op1,op2,op3,op4} where op3 and op4 are the inverses of

op2 and op1 respectively. The following correct transformation function may be defined over O p:
(i) IT (op1,op) = op2; (ii) IT (op2,op) = op1; (iii) IT (op3,op) = op4; and (iv) IT (op4,op) = op3;
where op ∈ O p. According to TP1, the following equalities should be satisfied:

op2 ·op2 ≡ op1 ·op1 (1)

op2 ·op1 ≡ op2 ·op1 (2)

op1 ·op2 ≡ op1 ·op2 (3)

op1 ·op1 ≡ op2 ·op2 (4)

The above IT function satisfies each of these properties. Indeed, for every matrix A, we have A ·op1 ·
op1 = 4×A and A ·op2 ·op2 = 4×A which means equivalence (1) is satisfied. Similarly, equivalence (4)
is satisfied. As for equivalence (2), it is correct since for every matrix A ∈M2,2, op2 ·op1 =

1
2 ×op2 ·op1

and op2 ·op1 = op2 · 1
2×op1. Clearly, 1

2×op2 ·op1 ≡ op2 · 1
2×op1. Similarly, equivalence (3) is correct.

It is easy to prove the correctness of the previous transformation function. Nevertheless, such a
transformation does not make sense since it just undoes the effect of the performed operation when
receiving a concurrent remote operation. For instance IT (op3,op2) = op4 = op2.

Consequently, we propose to enhance our CSP model with the constraints C1 (see Definition 10)
and C2 (see Definition 11) in order to avoid undesirable IT evaluations that hide the advantage of OT
approach (i.e. including the effect of concurrent operations).

Property C1 forbids transforming an operation into its inverse:
Definition 10 (Property C1). Given a CCO C = 〈S t,O p, IT 〉 then for every operations opi and op j

from O p, it must be that IT (opi,op j) 6= opi.

10 A Constraint-based Approach for Generating Transformation Patterns

As for property C2, it discards IT functions transforming an operation op1 against op2 to the inverse
of op2.

Definition 11 (Property C2). given a CCO C = 〈S t,O p, IT 〉 then for every operations opi and op j from
O p, if op j /∈ {opi,opi} then IT (opi,op j) 6= op j.

Accordingly, the final set of constraints is C = {TP2,IP2,IP3,C1,C2}.

4 Analysis of Transformation Patterns

To obtain all the experimental results of the undoability problem i.e. calculate all the evaluations of IT
with respect to our CSP model in a reasonable time, we have implemented a java prototype based on
the Choco solver [3]. Choco is a free and open source java library dedicated to constraint programming
that allows describing combinatorial problems in the form of constraint satisfaction problems and solves
them with constraint programming techniques.

As we represent the transformation function by a square matrix, it is possible to have symmetric
solutions (by rotation and reflection). To provide only effective solutions, we implemented a module that
eliminates all symmetric solutions.

In this section, we present how should be the transformation function so that undoability is correctly
managed. In particular, we study whether commutativity is necessary and sufficient for undoablity or
not. Our question stems from observing Examples 3 and 4: the shared integer register is undoable and
its operations are commutative, but the shared binary register is not and its operations do not commute.

To answer the previous question, we begin by defining commutativity property and its implications
on transforming and undoing operations. Next, we analyze the output of our solver for CCOs of orders
2, 4 and 6 respectively.

4.1 Commutativity Property

We formally define the commutativity as follows.

Definition 12 (Commutativity). Two operations op1 and op2 commute iff op1 ·op2 ≡ op2 ·op1.

In the following, we say that a set of operations O p is commutative if all of its operations are pairwise
commutative.

Commutativity property given in Definition 12 is strong in the sense that it enables us to reorder
any pair of operations whatever they are concurrent or causally dependent. Instead, in collaborative
applications, we just need to verify whether pairwise concurrent operations commute or not. The impact
of commutativity on IT function is shown in the following Theorem:

Theorem 1. For any pairwise concurrent operations op1,op2 ∈ O p, op1 commute with op2 iff
IT (opi,op j) = opi, i = 1,2.

Proof. As the transformation function IT is correct (see Definition 7), then IT satisfies TP1. That is, op1 ·
IT (op2,op1)≡ op2 · IT (op1,op2). Since, IT (op2,op1) = op2 and IT (op1,op2) = op1, we deduce from
the previous equivalence that op2 ·op1 ≡ op1 ·op2. Consequently, op1 commutes with op2. Moreover, if
O p is commutative then for every two operations op1 and op2 from O p, we have op1 ·op2 ≡ op2 ·op1.
Consequently, IT (op1,op2) = op1 and IT (op2,op1) = op2 according to TP1. Hence, for any pairwise
concurrent operations op1,op2 ∈ O p, op1 commutes with op2 iff IT (opi,op j) = opi, i = 1,2.

A. Cherif, A. Imine 11

A natural follow-up question is how to define a transformation function so that the collaborative
object is undoable and whether commutativity is necessary to achieve undoability or not?

First, we prove that commutativity is sufficient for undoability. In other words, we show that for any
given consistent object C = 〈S t,O p, IT 〉, if IT (opi,op j) = opi for all concurrent operations opi and op j

from O p then C is undoable (see Lemma 1).
Lemma 1 (Commutativity implies undoability). Given an object C = 〈S t,O p, IT 〉, if O p is commuta-
tive then C is undoable.
Proof. To prove that C is undoable, we have to verify that IP2 and IP3 properties are preserved. Since
O p is commutative then every operation is transformed to itself. Thus, for every two operations opi and
op j from O p, we have IT (IT (opi,op j),op j) = IT (opi,op j) = opi. Then, IP2 is satisfied. As for IP3, it
is satisfied since, IT (opi, IT (op j,opi)) = IT (opi,op j) = opi = IT (opi,op j).

In the following, we discuss the solutions provided by our prototype for orders 2, 4 and 6 and see
whether they commute or not.

4.2 CCO of order 2

To discuss the correct evaluations of the transformation function IT in the case of a 2-CCO, we consider
O p = {op1,op2} such that op1 = op2. When enforcing the set of constraints, only one solution was
provided by our solver (see Figure 4). This output shows that an undoable CCO of order 2 requires a

IT op1 op2
op1 op1 op1
op2 op2 op2

Figure 4: Output of the 2-CCO problem.
transformation function verifying IT (opi,op j) = opi for every pairwise operations opi and op j from O p
(i.e every operation is transformed to itself) thereby O p commute as stated in Theorem 1. Accordingly,
the commutativity is necessary to correctly undo concurrent operations in a 2-CCO.

4.3 CCO of order 4

Figure 5 shows the output of our solver in the case of 4-CCOs. For this experiment, we have considered
a set of four operations O p = {op1,op2,op3,op4} such that op1 = op4 and op1 = op3. Similarly to
2-CCOs, commutativity is necessary to achieve undoability since every operation is transformed to itself
(see Theorem 1).

IT op1 op2 op3 op4
op1 op1 op1 op1 op1
op2 op2 op2 op2 op2
op3 op3 op3 op3 op3
op4 op4 op4 op4 op4

Figure 5: Output of the 4-CCO problem.

4.4 CCO of order 6

We discuss here the transformation functions provided by our solver for CCOs of order 6. We have
considered that O p = {op1,op2,op3,op4,op5,op6} such that op1 = op6, op2 = op5 and op3 = op4.
Figure 6 shows that three solutions are possible to attain undoability.

12 A Constraint-based Approach for Generating Transformation Patterns

(1) Solution 1
IT op1 op2 op3 op4 op5 op6
op1 op1 op4 op1 op1 op4 op1
op2 op2 op2 op2 op2 op2 op2
op3 op3 op6 op3 op3 op6 op3
op4 op4 op1 op4 op4 op1 op4
op5 op5 op5 op5 op5 op5 op5
op6 op6 op3 op6 op6 op3 op6

(2) Solution 2
IT op1 op2 op3 op4 op5 op6
op1 op1 op4 op1 op1 op3 op1
op2 op2 op2 op2 op2 op2 op2
op3 op3 op1 op3 op3 op6 op3
op4 op4 op6 op4 op4 op1 op4
op5 op5 op5 op5 op5 op5 op5
op6 op6 op3 op6 op6 op4 op6

(3) Solution 3
IT op1 op2 op3 op4 op5 op6
op1 op1 op1 op1 op1 op1 op1
op2 op2 op2 op2 op2 op2 op2
op3 op3 op3 op3 op3 op3 op3
op4 op4 op4 op4 op4 op4 op4
op5 op5 op5 op5 op5 op5 op5
op6 op6 op6 op6 op6 op6 op6

Figure 6: Output of the 6-CCO problem.

Thus an undoable 6-CCO is not necessarily commutative. Indeed, among the three solutions provided
by our solver only the last one commutes according to Theorem 1. However, a very important observation
that can be made is: 4 operations from the operations set are transformed at least 4 times to themselves
and 2 others are always transformed to themselves. The analysis of both solutions 1 and 2 shows each
solution is formed by a commutative CCO of order 4 and another commutative CCO of order 2 such that
the transformation inter-CCOs (transformation between 4-CCO and 2-CCO) does not commute.

5 Discussion

Our previous study proves that commutativity is closely related to undoability while OT approach was
proposed to go beyond commutativity. Indeed, CCOs of order 2 and 4 are undoable if and only if they
commute as proven in the following theorem:

Theorem 2. Commutativity is necessary and sufficient to achieve undoablity for CCOs of order n≤ 4.

Proof. The experimental results obtained by executing the solver for CCOs of order 2 and 4 show that
commutativity is necessary to achieve undoability. Since commutativity is also sufficient to achieve un-
doability (see Lemma 1), we deduce that commutativity is equivalent to undoablilty for CCOs of orders
2 and 4.

However, commutativity is sufficient but not necessary to achieve undoablitiy in the case of CCOs
of order n ≥ 6. Indeed, our solver provides three correct transformation functions that are undoable
where only one is commutative according to Theorem 1. The two others do not commute but consist
of two sub-sets of commutative operations. Accordingly, a 6-CCO is formed by two intra-commutative
sub-CCOs such that the transformation inter both CCOs does not commute. The analysis of the output
presented in Figure 6 shows that the set of operations O p of any undoable 6-CCO is:

1. either commutative, i.e. IT (opi,op j) = opi for every pair of operations opi, op j in O p;

2. or the union of two sub-sets O p1 and O p2 such that: O p1 and O p2 are commutative of size 2
and 4 respectively (i.e. IT (opi,op j) = opi, for every pair of operations (opi,op j) ∈ O px×O px,
x ∈ {1,2}). The transformation inter CCOs is summarized as follows:

(a) for every pair of operations (opi,op j) ∈ O p1×O p2, IT (opi,op j) = opi

(b) for every pair of operations (opi,op j) ∈ O p2×O p1,

A. Cherif, A. Imine 13

i. either IT (opi,op j) = IT (opi,op j);
ii. or IT (opi,op j) = IT (opi,op j)

The solutions produced by our solver in the case of 8-CCOs validate the previous observation and
follow the patterns found above. However, due to space limit, we cannot present and discuss these
solutions. We strongly believe that the patterns found for 6-CCOs may be generalized by induction on
the CCO’s order.

Moreover, our experiments provide a small number of solutions which greatly simplifies the study
of the undoability problem. Indeed, our set of constraints considerably reduces the number of correct
evaluations for transforming concurrent operations which saves time and effort when designing a con-
current application. For instance, a 6-CCO normally generates 662

transformation functions while we
only obtain 3 patterns. This would be very useful for collaborative applications designers.

To summarize, this work proves that there is only one possible way of transforming concurrent opera-
tions for CCOs of order 2 and 4 to ensure they are undoable. This unique solution consists in transforming
each operation to itself thus the commutativity is necessary and sufficient to achieve undoablility. Oth-
erwise, commutativity is only sufficient. Furthermore, an undoable CCO of order n ≥ 6 is the union of
two intra-commutative sub-CCOs which allows devising generic transformation patterns useful for the
design of collaborative applications. Yet OT approach was proposed to go beyond commutativity, this
work shows that commutativity somehow impacts on undoability.

6 Related Work

Several works proposed undo capability for collaborative editors. The majority of these solutions are
based on log usage in order to store operations and recover earlier states.

Swap then undo [13] was the first selective undo. It consists on placing the selected operation in the
end of the history by swapping then executing its inverse. Unfortunately, this solution does not allow
to undo any operation since it is not always possible to swap operations in the log. To avoid this issue,
authors defined the boolean function con f lict() that aborts the undo procedure in conflicting situations.

Undo/Redo [14] was proposed to overcome the conflict problem. It consists in undoing all the
operations in the inverse chronological order. However, it is expensive since it requires to perform many
steps and does not allow undo in all cases since an operation may not be undoable.

The approach of Ferrié [7] has a quadratic complexity and is based on the transformation functions
of the algorithm SOCT2 [17] that violates convergence properties [8, 9].

UNO [25] consists in generating a new operation having the inverse effect of the operation to be
undone. Although it has a linear complexity, this solution only fits applications based on TTF [12] where
characters are not effectively deleted from the document. Moreover, the correctness proof of UNO
assumes the intention preservation which is not proved formally [16].

Both ANYUNDO-X [19] and COT [23] support integrated Do and selective Undo and allow the undo
of any operation while solving the known undo problematic. However, they both have an exponential
complexity and are based on avoiding some inverse properties (namely IP2 and IP3) instead of fulfilling
them. In COT, a contextual relation is introduced to illustrate the relation between an operation, its
inverse and the transformed intermediates forms of the inverse. The time complexity is also exponential
in the log size. The difference between ANYUNDO [19] and COT [23] is that the latter discuss the undo
in the case of causally dependent operations and not only concurrent ones.

Finally, the ABTU algorithm [16] proposes an undo solution basing on the transformation algorithm
ABT [10]. Even though the proposed algorithm has a linear complexity, it does not allow to undo

14 A Constraint-based Approach for Generating Transformation Patterns

any operation since undo is aborted in some cases. The transformation algorithm ABT is based on
effect relation allowing to order document updates in the log. Consequently, all updates are ordered
according to their effect relation on the shared document state. Authors assume that this relation ensures
convergence. However, this algorithm diverge in some cases.

7 Conclusion and Future Work

In this paper, we have presented a formal model for the undoability problem. Indeed, we have shown how
to formulate the undoability problem as a CSP. Thus, it is possible to compute all correct transformation
functions that achieve convergence and undoability using a CSP solver. Our experiments showed that
undoability for CCOs of order 2 and 4 is achieved if and only if the operations commute which consider-
ably simplifies the design of collaborative objects. However, for all CCOs of order n≥ 6, it is possible to
define multiple transformation functions to achieve undoability. Fortunately, we have showed that these
solutions are either commutative or formed by sub commutative CCOs. In future work, we will deeply
investigate in the transformation functions provided by our undoability solver in order to generalize the
transformation patterns defined for 6-CCOs and to provide a generic transformation framework for finite
and arbitrary set of operations. Such framework will be very useful for collaborative applications de-
signers since it guarantees the correctness and undoability for any given solution. Furthermore, we will
relax property IP2 by providing alternative constraints since it is always discard by designers instead of
being fulfilled.

References
[1] Jordan Bell & Brett Stevens (2009): A survey of known results and research areas for n-queens. Discrete

Mathematics 309(1), pp. 1 – 31, doi:http://dx.doi.org/10.1016/0012-365X(75)90079-5. Available at http:
//www.sciencedirect.com/science/article/pii/0012365X75900795.

[2] A. Bruen & R. Dixon (1975): The n-queens problem. Discrete Mathematics 12(4), pp. 393 – 395.

[3] Xavier Lorca Charles Prud’homme, Jean-Guillaume Fages (2014): Choco3 Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. Available at http://www.choco-solver.org.

[4] Asma Cherif, Abdessamad Imine & Michaël Rusinowitch (2011): Optimistic access control for distributed
collaborative editors. In: SAC, pp. 861–868, doi:10.1145/1982185.1982374. Available at http://doi.
acm.org/10.1145/1982185.1982374.

[5] Asma Cherif, Abdessamad Imine & Michaël Rusinowitch (2014): Practical access control management for
distributed collaborative editors. Pervasive and Mobile Computing 15, pp. 62–86.

[6] Clarence A. Ellis & Simon J. Gibbs (1989): Concurrency Control in Groupware Systems. In: SIGMOD Con-
ference, 18, pp. 399–407, doi:10.1145/66926.66963. Available at http://doi.acm.org/10.1145/
66926.66963.

[7] Jean Ferrié, Nicolas Vidot & Michèle Cart (2004): Concurrent Undo Operations in Collaborative Environ-
ments Using Operational Transformation. In: CoopIS/DOA/ODBASE (1), pp. 155–173.

[8] Abdessamad Imine, Pascal Molli, Gérald Oster & Michaël Rusinowitch (2003): Proving Correctness of
Transformation Functions Functions in Real-Time Groupware. In: ECSCW, pp. 277–293, doi:10.1007/978-
94-010-0068-0 15.

[9] Abdessamad Imine, Michael Rusinowitch, Gérald Oster & Pascal Molli (2006): Formal Design and Verifi-
cation of Operational Transformation Algorithms for Copies Convergence. Theoretical Computer Science
351(2), pp. 167–183, doi:10.1016/j.tcs.2005.09.066. Available at http://dx.doi.org/10.1016/j.
tcs.2005.09.066.

http://dx.doi.org/http://dx.doi.org/10.1016/0012-365X(75)90079-5
http://www.sciencedirect.com/science/article/pii/0012365X75900795
http://www.sciencedirect.com/science/article/pii/0012365X75900795
http://www.choco-solver.org
http://dx.doi.org/10.1145/1982185.1982374
http://doi.acm.org/10.1145/1982185.1982374
http://doi.acm.org/10.1145/1982185.1982374
http://dx.doi.org/10.1145/66926.66963
http://doi.acm.org/10.1145/66926.66963
http://doi.acm.org/10.1145/66926.66963
http://dx.doi.org/10.1007/978-94-010-0068-0_15
http://dx.doi.org/10.1007/978-94-010-0068-0_15
http://dx.doi.org/10.1016/j.tcs.2005.09.066
http://dx.doi.org/10.1016/j.tcs.2005.09.066
http://dx.doi.org/10.1016/j.tcs.2005.09.066

A. Cherif, A. Imine 15

[10] Du Li & Rui Li (2010): An Admissibility-Based Operational Transformation Framework for Collaborative
Editing Systems. Computer Supported Cooperative Work 19(1), pp. 1–43.

[11] Brad Lushman & Gordon V. Cormack (2003): Proof of correctness of Ressel’s adOPTed algorithm. Infor-
mation Processing Letters 86(3), pp. 303–310, doi:10.1016/S0020-0190(03)00227-8. Available at http:
//dx.doi.org/10.1016/S0020-0190(03)00227-8.

[12] Gérald Oster, Pascal Urso, Pascal Molli & Abdessamad Imine (2006): Data consistency for P2P collabora-
tive editing. In: CSCW, pp. 259–268.

[13] Atul Prakash & Michael J. Knister (1994): A framework for undoing actions in collaborative systems. ACM
Trans. Comput.-Hum. Interact. 1(4), pp. 295–330, doi:10.1145/198425.198427. Available at http://doi.
acm.org/10.1145/198425.198427.

[14] Matthias Ressel & Rul Gunzenhäuser (1999): Reducing the problems of group undo. In: GROUP ’99:
Proceedings of the international ACM SIGGROUP conference on Supporting group work, ACM, New York,
NY, USA, pp. 131–139, doi:10.1145/320297.320312. Available at http://doi.acm.org/10.1145/
320297.320312.

[15] Matthias Ressel, Doris Nitsche-Ruhland & Rul Gunzenhauser (1996): An Integrating, Transformation-
Oriented Approach to Concurrency Control and Undo in Group Editors. In: ACM CSCW’96, Boston, USA,
pp. 288–297, doi:10.1145/240080.240305. Available at http://doi.acm.org/10.1145/240080.
240305.

[16] Bin Shao, Du Li & Ning Gu (2010): An algorithm for selective undo of any operation in collaborative
applications. In: GROUP, pp. 131–140, doi:10.1145/1880071.1880093. Available at http://doi.acm.
org/10.1145/1880071.1880093.

[17] Maher Suleiman, Michèle Cart & Jean Ferrié (1997): Serialization of concurrent operations in a distributed
collaborative environment. In: ACM GROUP’97, pp. 435–445, doi:10.1145/266838.267369. Available at
http://doi.acm.org/10.1145/266838.267369.

[18] Chengzheng Sun (2000): Undo any operation at any time in group editors. In: CSCW ’00: Proceedings of the
2000 ACM conference on Computer supported cooperative work, ACM, New York, NY, USA, pp. 191–200,
doi:10.1145/358916.358990. Available at http://doi.acm.org/10.1145/358916.358990.

[19] Chengzheng Sun (2002): Undo as concurrent inverse in group editors. ACM Trans. Comput.-Hum. Inter-
act. 9(4), pp. 309–361, doi:10.1145/586081.586085. Available at http://doi.acm.org/10.1145/
586081.586085.

[20] Chengzheng Sun & Clarence Ellis (1998): Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: ACM CSCW’98, pp. 59–68, doi:10.1145/289444.289469. Available at
http://doi.acm.org/10.1145/289444.289469.

[21] Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang & David Chen (1998): Achieving Convergence,
Causality-preservation and Intention-preservation in real-time Cooperative Editing Systems. ACM Trans.
Comput.-Hum. Interact. 5(1), pp. 63–108, doi:10.1145/274444.274447. Available at http://doi.acm.
org/10.1145/274444.274447.

[22] Chengzheng Sun, Steven Xia, David Sun, David Chen, Haifeng Shen & Wentong Cai (2006): Transparent
adaptation of single-user applications for multi-user real-time collaboration. ACM Trans. Comput.-Hum.
Interact. 13(4), pp. 531–582, doi:10.1145/1188816.1188821. Available at http://doi.acm.org/10.
1145/1188816.1188821.

[23] David Sun & Chengzheng Sun (2009): Context-Based Operational Transformation in Distributed
Collaborative Editing Systems. IEEE Trans. Parallel Distrib. Syst. 20(10), pp. 1454–1470,
doi:10.1109/TPDS.2008.240. Available at http://dx.doi.org/10.1109/TPDS.2008.240.

[24] Edward Tsang (1993): Foundations of Constraint Satisfaction.

[25] Stéphane Weiss, Pascal Urso & Pascal Molli (2008): An Undo Framework for P2P Collaborative Editing.
In: 4th International Conference on Collaborative Computing, 10, Springer Berlin Heidelberg, Orlando, US,
pp. 529–544.

http://dx.doi.org/10.1016/S0020-0190(03)00227-8
http://dx.doi.org/10.1016/S0020-0190(03)00227-8
http://dx.doi.org/10.1016/S0020-0190(03)00227-8
http://dx.doi.org/10.1145/198425.198427
http://doi.acm.org/10.1145/198425.198427
http://doi.acm.org/10.1145/198425.198427
http://dx.doi.org/10.1145/320297.320312
http://doi.acm.org/10.1145/320297.320312
http://doi.acm.org/10.1145/320297.320312
http://dx.doi.org/10.1145/240080.240305
http://doi.acm.org/10.1145/240080.240305
http://doi.acm.org/10.1145/240080.240305
http://dx.doi.org/10.1145/1880071.1880093
http://doi.acm.org/10.1145/1880071.1880093
http://doi.acm.org/10.1145/1880071.1880093
http://dx.doi.org/10.1145/266838.267369
http://doi.acm.org/10.1145/266838.267369
http://dx.doi.org/10.1145/358916.358990
http://doi.acm.org/10.1145/358916.358990
http://dx.doi.org/10.1145/586081.586085
http://doi.acm.org/10.1145/586081.586085
http://doi.acm.org/10.1145/586081.586085
http://dx.doi.org/10.1145/289444.289469
http://doi.acm.org/10.1145/289444.289469
http://dx.doi.org/10.1145/274444.274447
http://doi.acm.org/10.1145/274444.274447
http://doi.acm.org/10.1145/274444.274447
http://dx.doi.org/10.1145/1188816.1188821
http://doi.acm.org/10.1145/1188816.1188821
http://doi.acm.org/10.1145/1188816.1188821
http://dx.doi.org/10.1109/TPDS.2008.240
http://dx.doi.org/10.1109/TPDS.2008.240

	Introduction
	Operational Transformation Approach
	Doability of Updates
	Undoability of Updates

	Formalizing the undoability problem
	Consistent Collaborative Object (CCO)
	CSP Statement

	Analysis of Transformation Patterns
	Commutativity Property
	CCO of order 2
	CCO of order 4
	CCO of order 6

	Discussion
	Related Work
	Conclusion and Future Work

