
To appear in EPTCS.

A Context-Oriented Extension of F#

Andrea Canciani Pierpaolo Degano Gian-Luigi Ferrari Letterio Galletta
Dipartimento di Informatica, Università di Pisa, Italy

{canciani,degano,giangi,galletta}@di.unipi.it

Context-Oriented programming languages provide us with primitive constructs to adapt program
behaviour depending on the evolution of their operational environment, namely the context. In pre-
vious work we proposed MLCoDa, a context-oriented language with two-components: a declarative
constituent for programming the context and a functional one for computing. This paper describes
the implementation of MLCoDa as an extension of F#.

1 Introduction

Modern software systems are designed to operate always and everywhere, in partially known, ever chang-
ing operational environments. Their structure is therefore subject to continuous changes that are unpre-
dictable at design time. A suitable management of these changes should maintain the correct behaviour
of applications and their non-functional properties, e.g. quality of service. Effective mechanisms are thus
required to adapt software to changes of the operational environment, namely the context in which the
application runs.

Using standard programming languages, context-awareness is usually implemented by modelling
the context through a special data structure, which can answer to a fixed number of queries, whose
results can be tested through if statements. This approach however charges the programmer with the
responsibility of implementing this data structure and the corresponding operations. In addition, she is
responsible of achieving a good modularisation, as well as a good separation of cross-cutting concerns,
and of the interactions between the code using the context and legacy code. Successful examples are
offered by special design patterns [21] and Aspect-Oriented Programming [17] that encapsulate context-
dependent behaviour into separate modules (objects and aspects, respectively), but leave most of the
burden of handling the context and its changes (and their correctness) to the programmers. Therefore,
new dynamic development models, and programming language constructs are required to effectively
support the evolution and adaptation of applications to changes of the context [5].

Recently, Context Oriented Programming (COP) [8] was proposed as a viable paradigm to develop
context-aware software. It advocates languages with suitable constructs for adaptation, so to express
context-dependent behaviour in a modular manner. In this way adaptivity is built-in, and the provided
linguistic abstractions impose a good practice to programmers, with a positive effect on correctness and
modularity, mainly because low level details about context management are masked by the compiler.

In previous papers [10, 9] we followed this line of research from a foundational perspective and we
proposed a programming language core, called MLCoDa, equipped with a clear formal semantics and
specifically designed for adaptation. It has two components: a logic constituent for programming the
context and a functional one for computing. The logical component provides high level primitives for
describing and interacting with complex working environments. The functional component supports
programming of a variety of adaptation patterns. Its higher-order facilities are essential to exchange
the bundle of functionalities required to manage adaptivity changes. Moreover, MLCoDa offers a further
support through a static analysis that guarantees programs to always be able to adapt in every context [9].

2 A Context-Oriented Extension of F#

In addition to the formal aspects of MLCoDa studied in [9], a main feature of our approach is that
a single and fairly small set of constructs is sufficient enough for becoming a practical programming
language, as shown in the present paper. Indeed, MLCoDa can easily be embedded in a real programming
eco-system, in our case .NET, so preserving compatibility with its future extensions and with legacy
code. Being part of a well supported programming framework, our proposal minimises the learning cost
and lowers the complexity of deploying and maintaining applications.

This paper illustrates a prototypical implementation of MLCoDa as an extension of the (ML family)
functional language F# through a simple case study. Indeed, no modifications at all was needed to
the available compiler and to its runtime. We exploited F# metaprogramming facilities, such as code
introspection, quotation and reflection, as well as all the features provided by .NET, including a vast
collection of libraries and modules, and in particular a Just-In-Time (JIT) mechanism for compiling to
native code. All in all, MLCoDa is implemented as a standard .NET library.1 In the path towards the
implementation a main role has been played by the formal description of the language. In particular,
the MLCoDa formal semantics highlights and explains how the interactions between the two components
occur. Indeed, the crucial parts of the implementation toolchain, compilation, generated code and run-
time structures, together with their interactions, are formally identified and described. As a matter of
fact, the formal semantics gave us a great support, because it has been used to drive the definition of all
the fine-grained control mechanisms governing MLCoDa implementation.

Plan of the paper In Section 2, we first briefly review the design of the language and its two compo-
nents. Section 3 is a gentle introduction to our COP language, through which we describe a simple case
study, simulating an e-Healthcare system. In Section 4, we present our approach to the implementation
of MLCoDa that is discussed then in Section 5; the same section also briefly compares our work with the
relevant literature. Finally, we draw some conclusions and present future work in Section 6.

2 Design of MLCoDa

We survey MLCoDa, a core functional programming language, equipped with linguistic primitives for
context-awareness and coupled with a logical language, for context definition and management. We
first present how the context is described, and then the high level primitives for adaptation. We omit
discussing the two-phase static analysis designed for MLCoDa [9]. Briefly, it detects if an application will
be able to adapt to its execution contexts: at compile time, the first phase safely approximates the actions
performed on the context; at loading time the second phase exploits the approximation above to check
that the program will adapt to all the contexts that may occur at runtime.

The context The notion of context, i.e. the environment where applications run, is fundamental for
adaptive software. Intuitively, it is a heterogeneous collection of data coming from different sources and
having different representations. Some of these data are application independent, like those about the
hardware capabilities, e.g. screen resolution, and about the physical environment, e.g. the location of
the user; other data are application-dependent like user’s preferences, e.g. the language of the user. It is
worth noting that the context influences the shape and the features of the program input (e.g. from where
it is taken) and how it is processed, but the context is not part of the input itself. Of course, the context
also affects the execution of the application.

1Available at https://github.com/vslab/fscoda

https://github.com/vslab/fscoda

A. Canciani, P. Degano, G.-L. Ferrari & L. Galletta 3

In MLCoDa, the context is split in two coarse parts: the system and the application context, following
a well-established practice that separates data coming from inside the application and those coming from
outside [22]. Both parts are represented and manipulated in a uniform way, so guaranteeing compatibility
and modularity. Also, a programmer needs tools to access and manipulate all kind of contextual data in
a easy and uniform way. Indeed, the context is developed by requirements engineers [26], that have
tools and skills different from those needed for building applications [20, 18]. This methodological
issue, as well as separation of concerns motivated us to define MLCoDa as a two-component language: a
declarative constituent for programming the context and a functional one for computing.

The declarative approach allows programmers to express what information the context has to include,
leaving to the virtual machine how this information is actually collected and managed. For us, a context is
a knowledge base and we implement it as a Datalog program, following a well-studied approach [20, 18],
within established methodologies [15, 11]. In other words, a context in MLCoDa is a set of facts that
predicate over a possibly rich data domain, and a set of logical rules that permit to deduce further implicit
properties of the context itself. With this representation, adaptive programs can query the context and
retrieve relevant information, by simply verifying whether a given property holds in it, i.e. by checking a
Datalog goal. Note that deduction in Datalog is fully decidable in polynomial time [7].

Adaptation As for programming adaptations, the functional part of the language provides two mech-
anisms. The first is context-dependent binding through which a programmer declares variables whose
values depend on the context. For that, we introduce the dlet construct that is syntactically similar to the
standard let, but has an additional Datalog goal therein: dlet x = e1 when goal in e2. The vari-
able x (called parameter hereafter) may denote different objects, with different behaviour depending on
the different properties of the current context, as required by goal. This is a major aspect of adaptivity.

The second mechanism is based on behavioural variations: a chunk of behaviour that can be ac-
tivated depending on information picked up from the context, so to dynamically adapt the running ap-
plication. This construct implements the fundamental concept of the COP paradigm, and in MLCoDa it
is a list of pairs goal.expression, similar to pattern-matching, that alters the control flow of applica-
tions depending on the context. When a behavioural variation is executed, parts of the deployed code
are suitably selected to meet the new requirements. Behavioural variations have parameters and they
are values, so they can be referred to by identifiers; passed and returned by functions; supplied by the
context; and composed with existing ones. This facilitates programming dynamic adaptation patterns, as
well as reusable and modular code.

Besides the features that describe and query the context, and those that adapt program behaviour,
MLCoDa is also equipped with constructs that update the context by adding data represented as Datalog
facts F (tell F) and removing them (retract F).

3 A simulator of an e-Healthcare system

In this section we illustrate and discuss the main features of MLCoDa and how these affect the develop-
ment of an application. In the following example, we consider a fragment of an e-Healthcare system with
a few aspects typical of the Internet of Things. In particular, we discuss how physicians can access the
medical data through their devices and how this system can help them to plan some medical activities.

An e-Healthcare scenario In our scenario each physician is provided with a device, e.g. a smartphone
or a tablet, which tracks her location and enables her to retrieve a patient’s clinical record. On the basis of

4 A Context-Oriented Extension of F#

the obtained data, the doctor can decide which exams the patient needs and the system helps scheduling
them. Additionally, the system checks whether the doctor has the competence and the permission to ac-
tually perform the required exam, otherwise it may suggest another physician who can, possibly coming
from another department. When a doctor moves from a ward to another, her operating context changes,
in particular she can access the complete clinical records of the patients therein. The application must
adapt to the new context and it may additionally provide different features, e.g. by disabling rights to use
some equipment and by acquiring access to new ones.

The e-Healthcare context We consider a portion of our e-Healthcare system, and we show how to
declaratively describe the relevant contextual information, through Datalog. In particular, we take into
account the part of the context that stores and makes available data about the doctors’ location, informa-
tion about their devices, the patients’ medical records and the ward medical equipment. Some basic data
are asserted by Datalog facts, and one can retrieve further information through the inference machinery
of Datalog, that uses logical rules, also stored in the context.

For example, the fact that Dr. Turk is in cardiology is rendered by the fact

physician_location('Dr. Turk', 'Cardiology ').

The following inference rule permits to deduce that a doctor can access the clinical data of patients
in the same department where she is:

physician_can_view_patient(Physician , Patient) :-

physician_location(Physician , Location),

patient_location(Patient , Location).

This rule states that the predicate on the left hand-side of the implication operator :- holds when the con-
junction of the predicates (physician_location and patient_location) in the right hand-side yields
true, i.e. when the physician and patient’s location are the same. The MLCoDa context is quite expressive
and allows us to model fairly complex situations. For example, sometimes the patients could be pre-
scribed an exam which can only be performed after some other screenings. Therefore, to compute the
list of exams a patient needs, we have to take into account all the dependencies among them. This could
be encoded in the context through the following recursive rules:

patient_needs_result(Patient , Exam) :-

patient_has_been_prescribed(Patient , Exam).

patient_needs_result(Patient , Exam) :-

exam_requirement(TargetExam , Exam),

patient_needs_result(Patient , TargetExam).

The first rule states that the prescription of an exam implies that the involved patient needs the
results of the test. The second rule says that whenever a patient needs an exam, she also needs all the
screenings the exam depends on. Datalog provides a convenient way to model recursive relations like
the dependency among exams, that may require involved queries with standard relational databases.

The next rule dictates that a patient has to do an exam if the two clauses in the right hand-side are
true. The first has been already discussed above, while the second clause says that a patient should not
do an exam if its results are already known (in the rule below the operator \+ denotes the logical not). 2

patient_should_do(Patient , Exam) :-

2 Our version of Datalog only admits safe and stratified programs, so to effectively cope with negation [7].

A. Canciani, P. Degano, G.-L. Ferrari & L. Galletta 5

patient_needs_result(Patient , Exam),

\+ patient_has_result(Patient , Exam).

In addition, physical objects can be declaratively described in quite a similar, homogeneous manner.
The following (simplified) rule specifies when a device can display a certain exam, by checking whether
it has the needed capabilities:

device_can_display_exam(Device , Exam) :-

device_has_caps(Device , Capability),

exam_view_caps(Exam , Capability).

Asserting the capabilities of a device is straightforward, by listing a set of facts, e.g.

device_has_caps('iPhone 5', '3D acceleration ').

device_has_caps('iPhone 5', 'Video codec').

device_has_caps('iPhone 5', 'Text display ').

device_has_caps('Apple Watch', 'Text display ').

Adaptation constructs Now, we show how context-dependent bindings and behavioural variations
allow a programmer to express program behaviour which depends on the context in our e-Healthcare
system. When a doctor enters a department and visits some patients, she can display the patients’ medical
records on her personal device. Moreover, the e-Healthcare system computes the list of the clinical exams
a patient should do and that the doctor can perform. The following code implements these functionalities,
and shows all the adaptation constructs of MLCoDa. The display function below takes a doctor phy and a
patient pat as arguments and prints on the screen the information about the patient’s exams.

1 let display phy pat =

2 match ctx with

3 | _ when !- physician_can_view_patient(phy , pat) ->

4 match ctx with

5 | _ when !- patient_has_result(pat , ctx?e) ->

6 printfn "%s sees that %s has done:" phy pat

7 for _ in !-- patient_has_result(pat , ctx?exam) do

8 display_exam phy ctx?exam

9 | _ ->

10 printfn "%s sees that %s has done no exam" phy pat

11
12 let next_exam = "no exam" |- True

13 let next_exam = ctx?exam |-

14 (physician_exam(phy , ctx?exam),

15 patient_active_exam(pat , ctx?exam))

16 printfn "%s can submit %s to %s" phy pat next_exam

17 | _ ->

18 printfn "%s cannot view details on %s" phy pat

Actually, the code above is F#, a dialect of ML. Since we wanted to keep the F# parser unmodified,
the syntax is slightly different from the one used in [9] and recalled in Section 2. This is only an
implementation detail, because a simple macro-expansion suffices to translate the original syntax in
the intermediate notation used in this section.

A behavioural variation has the form match ctx with | _ when !- Goal -> expression. The sub-
expression match ctx with explicitly refers to the context; the part | _ when !- Goal introduces the goal
to solve; and -> expression is the sub-expression to evaluate when the goal is true.

6 A Context-Oriented Extension of F#

The outermost behavioural variation (starting at line 2) checks whether the doctor phy is allowed to
inspect the data of the patient pat, as granted when the goal physician_can_view_patient(phy, pat) at
line 3 holds.

The nested behavioural variation (line 4) checks if the patient has got the results of some exams,
through the predicate patient_has_result. If this goal holds, the for construct extracts the list of ex-
ams and results from the context (line 7). The statement for _ in !-- Goal do expression iterates the
evaluation of expression over all the solutions of the Goal. In other words, it is an iterator on-the-fly,
driven by the solvability of the goal in the context. Note that the predicate patient_has_result at line
7 contains the goal variable ctx?exam: if the query succeeds, at each iteration ctx?exam is bound to the
current value satisfying Goal. A goal variable is introduced in a goal, defining its scope, through the
syntax ctx?var_name.

Finally, the function display prints an exam that can be performed next on the patient pat by the
physician phy, by using the construct for the context-dependent binding. Here we write it in the following
form let x = expression1 |- Goal [in] expression2, where the keyword let and the operator |- replace
dlet and when, used in Section 2. At lines 12-13 we declare by cases the parameter next_exam, that is
referred to in line 16. Which case applies and which value will be bound to next_exam can only be
determined at runtime when the parameter is used, because they depend on the actual context. If the goal
in lines 14-15 hold, then next_exam assumes the value retrieved from the context, otherwise it gets the
default value "no exam". (The predicate True always holds independently of the context.)

Actually, it may happen that no goal is satisfied in a context during the execution of a behavioural
variation or during the resolution of a parameter. This reflects the inability of the application to adapt,
either because the programmer assumed at design time the presence of functionalities that the current
context lacks, or because of programming errors. This is a new class of runtime errors that we call
adaptation failures. For example, the following function assumes that given the identifier of a physician,
it is always possible to retrieve her location from the context through the physician_location predicate:
let find_physician phy =

let loc = ctx?location |-

physician_location(phy , ctx?location) in

loc

If the function find_physician is invoked on a physician whose location is not stored in the context,
e.g. due to a programming error, the context-dependent binding will fail to find a solution for the goal.
In such a case the current implementation throws a runtime exception. This is a common pattern in
languages like F#, which makes behaviour both easy to manage and to integrate with existing code. In
the current implementation we use the standard F# construct to handle an adaptation failure as shown in
the following snippet of code:
let find_physician phy =

try

let loc = ctx?location |-

physician_location(phy , ctx?location) in

loc

with e ->

printfn "WARNING: cannot locate %s:\n%A" phy e

"unknown location"

A more sophisticated approach involves statically determining whether the adaptation might fail and
reporting it before running the application, as described in [9].

The interaction with the Datalog context is not limited to queries: it is possible to program the
modifications to the knowledge base on which it performs deduction. Adding or removing facts is done

A. Canciani, P. Degano, G.-L. Ferrari & L. Galletta 7

by the tell and retract operations, as in:

tell <| patient_has_result("Alice", "CT scan")

Some execution examples We now show how the functions defined above give different results when
invoked in different contexts, some parts of which will only be described intuitively.3

For example, in a context where Dr. Turk is not in the same ward as Bob

display "Dr. Turk" "Bob"

outputs

Dr. Turk cannot view details on Bob

because physicians are only allowed to see data about the patients in the department where they are. In
particular, the behavioural variation on physician_can_view_patient at line 3 finds out that the operation
is not allowed. If instead Dr. Cox is in the same department where Bob is, the call

display "Dr. Cox" "Bob"

correctly prints the details about Bob (actually these are stored in the Datalog knowledge base):

Dr. Cox sees that Bob has done no exam

Dr. Cox can submit Bob to Blood test

In this case the outermost behavioural variation (starting at line 2) confirms that Dr. Cox can view the
data. The nested one (starting at line 4), driven by patient_has_result, finds no exam for Bob, hence the
function displays the no-exam message (line 10). Moreover, the program finds out that Dr. Cox could do
a blood test on Bob, as he is enabled to, and additionally Bob needs no pre-screening and so that exam
can be done immediately, because the predicate at line 15 holds.

We now consider a slightly more complex situation, in which the context itself is modified. Patient
Alice has already performed an EEG test, and doctors prescribed her a CT and nothing else. Dr. Kelso is
in Alice’s room, is enabled to do only CT tests and carries a device on which he can visualise the results.
In this context

display "Dr. Kelso" "Alice"

outputs

Dr. Kelso sees that Alice has done:

- EEG

Dr. Kelso can submit Alice to CT scan

The main difference from the case above is that Alice has already performed an exam, which is hence
listed by the iteration construct. Now Dr. Kelso performs a CT scan on Alice and thus the context has to
be accordingly changed, by asserting the fact

tell <| patient_has_result("Alice", "CT scan")

The same fragment of code above

display "Dr. Kelso" "Alice"

has a different output in the modified context

3 For a full definition of the code see https://github.com/vslab/fscoda.

https://github.com/vslab/fscoda

8 A Context-Oriented Extension of F#

Dr. Kelso sees that Alice has done:

- EEG

- CT scan

Dr. Kelso can submit Alice to no exam

Besides displaying a longer list of exam results, the application shows Dr. Kelso that Alice needs
him to perform no other exam.

Assume Dr. Cox moves to Alice’s room and checks her medical report, but he has a device that
cannot show CT images
display "Dr. Cox" "Alice"

prints the following

Dr. Cox sees that Alice has done:

- EEG

- CT scan (current device cannot display the exam data)

Dr. Cox can submit Alice to no exam

Since the CT scan cannot be displayed by the device, the display_exam function warns the doctor and
it might present the results in a more limited form, e.g a static thumbnail.

The e-Healthcare system might also help Bob in finding out the physicians that can visit him:
for _ in !-- (patient_active_exam("Bob", ctx?exam),

physician_exam(ctx?physician , ctx?exam)) do

printfn "%s (currently in %s) can submit Bob to %s"

ctx?physician (find_physician ctx?physician) ctx?exam

This fragment prints the name and the position of all of the physicians that might perform an exam
which Bob needs. This code snippet relies on the second version of find_physician, which handles
adaptation failures by logging the error and returning "unknown location" as a result. Assuming that Dr.
Turk has left the hospital and Dr. Cox is in the cardiology department, the output would be:

Dr. Cox (currently in Cardiology) can submit Bob to Blood test

WARNING: cannot locate Dr. Turk:

CoDa.InconsistentContext: Context inconsistency detected

Dr. Turk (currently in unknown location) can submit Bob to Blood test

Since it is not possible to deduce the location of Dr. Turk from the context, the context-dependent
binding in find_location fails. Nonetheless the program can continue the execution after handling the
exception.

4 Internals of a prototype compiler

In order to implement MLCoDa, we found it convenient to build upon a functional language and to in-
tegrate it with a Datalog engine, as easily as possible. As said, our choice has been F# which is com-
mercially supported, and fully integrated in the .NET ecosystem. We exploited the metaprogramming
facilities available in F# for the MLCoDa adaptation constructs to avoid re-implementing well-known
primitives, while the deduction engine is that of YieldProlog, available as a .NET library. The bipartite
nature of MLCoDa fosters the independence between context and application development. This design
choice is well supported by .NET through the notion of assemblies. They work just as modules and offer
us a natural way to separate the code of the context from that of the application.

A. Canciani, P. Degano, G.-L. Ferrari & L. Galletta 9

Implementing the context A requirements engineer writes several Datalog sources describing the
context in hand. These files are ahead-of-time translated to a .NET code by our compiler ypc, which is
based on a customised version of the library YieldProlog4. YieldProlog works as our Datalog engine,
handling the context state and solving goals. Our translation compiles each predicate into a method,
whose code enumerates one by one the solutions, i.e. the assignments of values to variables which satisfy
the predicate. In this way, the interaction and the data exchange between the application and the context
is fully transparent to the programmer because the .NET type system is uniformly used everywhere.
Indeed, data inside the context are instances of the class object, hence the programmer can insert any
object in the context as long as the method Equals is appropriately overridden. This is required because
the Datalog engine during the deduction process needs to check if two objects (considered as atoms by
the engine) are equal.

For example, the predicate

patient_needs_result(Patient , Exam) :-

patient_has_been_prescribed(Patient , Exam).

patient_needs_result(Patient , Exam) :-

exam_requirement(TargetExam , Exam),

patient_needs_result(Patient , TargetExam).

is translated into

1 public static IEnumerable <bool > patient_needs_result(object Patient , object Exam)

2 {

3 foreach (bool l2 in patient_has_been_prescribed(Patient , Exam))

4 yield return false;

5
6 Variable TargetExam = new Variable ();

7 foreach (bool l2 in exam_requirement(TargetExam , Exam))

8 foreach (bool l3 in patient_needs_result(Patient , TargetExam))

9 yield return false;

10 }

The enumeration of goal solutions works through side-effects, by modifying the values of the input
parameters, i.e. the return value (which is always false) is never used. The loop at lines 3-4 returns to the
caller for each solution of patient_has_been_prescribed, because the Patient and Exam pair is a solution
according to the first rule. At line 6, the compilation of the second rule introduces the variable TargetExam,
because it appears free in the body. The conjunction of subgoals is obtained by two nested loops, so that
the statement at line 9 is reached only if both loops enumerate consistent solutions. The unification
algorithm, implemented by the class Variable, ensures the consistency of the solutions computed by the
different subgoals. The recursive definition of patient_needs_result requires no special handling as it is
implemented as a recursive method in a straightforward way.

Functional part The application programmer writes F# code, annotating the functions which use
MLCoDa extensions with custom attributes (see code below) and starting the MLCoDa runtime. Since the
operations needed to adapt the application to contexts are transparently handled by our runtime support,
the compiler fsharpc works as it is. Indeed, the MLCoDa-specific constructs are just-in-time replaced in
a single step by their F# implementation when they are about to be run. A simple example follows.

4Available at https://github.com/vslab/YieldProlog

https://github.com/vslab/YieldProlog

10 A Context-Oriented Extension of F#

1 [<CoDa.Code >]

2 module Physicians.Test

3
4 open CoDa.Runtime // the runtime

5 open Physicians.Facts // functional to logic typed interface

6 open Physicians.Types // logic to functional typed interface

7 open ... // other libraries used by the application

8
9

10 [<CoDa.Context("pysician -ctx")>]

11 [<CoDa.Context("patients -ctx")>]

12 [<CoDa.Context("devices -ctx")>]

13 [<CoDa.EntryPoint >]

14 let main () =

15 display "Dr. Turk" "Bob"

16 display "Dr. Cox" "Bob"

17 printfn ""

18 display "Dr. Cox" "Alice"

19 display "Dr. Kelso" "Alice"

20 printfn ""

21
22 // Other code

23 do

24 run ()

The attribute CoDa.Code marks the MLCoDa-specific constructs which need to be transformed, e.g.
the above module Physicians.Test. Actually, the attribute CoDa.Code is an alias for the standard
ReflectedDefinitionAttribute, that marks modules and members whose abstract syntax trees (AST)
are used at runtime through reflection. Note that MLCoDa-specific operations are only allowed in methods
marked with this attribute; otherwise an exception is raised when they are invoked.

The attribute CoDa.EntryPoint marks the principal function of the application (main above). When
the MLCoDa runtime is initialised and started through the function run, it looks for the function f marked
by CoDa.EntryPoint; then it transforms the code of the function replacing the MLCoDa-specific con-
structs with their F# object code; and finally runs the obtained object code. The translation is performed
on the AST represented in the form of quotations. Hereafter, for readability, we will show the object
code in F# syntax, rather than the quotation emitted by the JIT compiler.

The lines 10-12 in the code show that the context is conveniently split in distinct modules. The at-
tribute CoDa.Context describes which of its parts are needed for the application. The runtime initialises
the context and links it with the application, before running it. The code that initialises the context of the
e-Healthcare system behaves as the following one:

[<CoDa.Code >]

module Physicians.Context

// code to import Runtime , Types , Facts (see lines 4-7 in the code above)

[<CoDa.ContextInit >]

let initFacts () =

tell <| physician_exam("Dr. Cox", "ECG")

tell <| physician_exam("Dr. Cox", "Blood test")

// other code

The MLCoDa construct tell adds facts in the context (there is also a retract to remove facts); it
is implemented as a method of the Runtime.context object, only accessible by the MLCoDa runtime.

A. Canciani, P. Degano, G.-L. Ferrari & L. Galletta 11

The modules Facts and Types provide the interface between the functional code and the context. In
particular, they contain utility functions for typing facts and predicates in F#, respectively. The above
function initFacts is compiled as

let initFacts () =

Runtime.context.Tell <| physician_exam("Dr. Cox", "ECG")

Runtime.context.Tell <| physician_exam("Dr. Cox", "Blood test")

// other code

We now discuss how the two main constructs for expressing adaptation, behavioural variations and
context-dependent binding, are implemented in our e-Healthcare system. Consider the function display

defined in Section 3. The behavioural variations of lines 2-5 are compiled as

if Runtime.context.Solve ([| physician_can_view_patient(phy , pat)|],

null) then

let solution1 = new Dictionary <string , obj >()

solution1 .["e"] <- new Variable ()

if Runtime.context.Solve ([| patient_has_done(pat , solution1 .["e"])|],

solution1) then

...

else

printfn "%s sees that %s has done no exam" phy pat

else

printfn "%s cannot view details on %s" phy pat

The match expression becomes an if, whose guard queries the context by the method Solve. The
above translation also illustrates the mechanism that implements the goal variables. The dictionary
solution1 is initialised with the variable introduced in the goal, namely ctx?e of line 5. The dictionary
is then passed to the Datalog solver as second argument. If a solution is found, solution1 contains an
assignment to the value that satisfies the goal, and allows us to access the solution, but only within the
scope of the corresponding if expression. Note that the outermost behavioural variation uses no goal
variables, hence no dictionary is needed (the second argument of Solve is null).

The for construct follows the same schema; the iteration of line 7 is translated as

let solution2 = new Dictionary <string , obj >()

solution2 .["exam"] <- new Variable ()

let variables0 = new Dictionary <string , obj >(solution2)

for _ in Runtime.context.Enumerate ([| patient_has_done(pat , solution2 .["exam"])|],

variables0 , solution2) do

Runtime.callTramp display_exam [| phy; solution2 .["exam"] |]

The method Enumerate returns a stream that iterates over the goal solutions by storing them in the dictio-
nary solution2. The original body of the for loop consisted of a call to the function display_exam (line 8),
which is instrumented by interposing the method callTramp. This is the hook used by the JIT compiler
to overtake control when an MLCoDa function needs to be translated. For merely technical reasons, the
dictionary variables0, which initially is a clone of solution2, is passed to the method Enumerate.

The binding of the parameter next_exam (lines 12-16) is implemented by the following snippet

12 A Context-Oriented Extension of F#

let next_exam () =

if Runtime.context.Solve ([| Runtime.True |], null) then

"no exam"

else

raise <| new InconsistentContext ()

let next_exam () =

let solution2 = new Dictionary <string , obj >()

solution2 .["exam"] <- new Variable ()

if Runtime.context.Solve ([| physician_exam(phy , solution2 .["exam"]);

patient_active_exam(pat , solution2 .["exam"]) |],

solution2) then

solution2 .["exam"]

else

next_exam ()

printfn "%s can perform %s on %s" phy (next_exam ()) pat

Recall that parameters are evaluated in the context where they are referred to (line 16 in the original
code), in a lazy way. This is rendered by the application next_exam () in the printfn statement above.
This resolves to the innermost definition of the function next_exam, which checks the goal at lines 14-15.
If the runtime finds a solution, the then branch evaluates to the goal variable ctx?exam; otherwise the
task of determining the binding is delegated to the outermost let. If even the outermost binding fails, an
exception is raised to signal that the application is unable to adapt to the current context. However, here
this will never be the case, because the predicate Runtime.True always holds.

5 Discussion

We briefly discuss the relevant literature on COP languages, and we refer the reader to the survey by
Salvaneschi et al. [24] on the design of languages, and to that by Appeltauer et al. [2] on some implemen-
tations. Most of the proposals of COP languages (to cite a few: JCop [3], ContextL [8], Javanese [14],
Subjective-C [12], PyContext [19]) describe the properties of the context as a stack of layers. A layer can
roughly be seen as an elementary proposition that drives adaptation and that can be activated or deacti-
vated at runtime. Our context is instead a knowledge base, that offers primitives for easily storing and
retrieving contextual data through Datalog queries. Consequently, adaptation is driven on the basis of
possibly complex deductions on the knowledge base. We note that a (functional) language linked with
a database system does not suffice for implementing adaptation to the context easily and directly, unless
equipped with a deductive engine. In the existing implementations, behavioural variations are often im-
plemented as partially defined methods, and are not first-class (except e.g. for ContextL [8]), while ours
are and it is well known that this feature improves code modularisation. As a final remark, many COP
languages include a proceed construct, a sort of super invocation in object oriented languages [13],
typically used for composing active behavioural variations. This construct is strictly related to the idea
of representing the context as a stack of layers, and it is unclear whether it makes sense to introduce a
similar construct also in a full-fledged declarative context as ours. Nevertheless, one could consider to
implement a construct similar to call-next-method [25], in order to run the next case with a satisfied goal,
within the active behavioural variation.

Our implementation of MLCoDa took advantage of F#, both for the adaptation component and for the
knowledge base. The F# compiler is stable and generates optimised bytecode; it is officially supported
by Microsoft and fully integrated inside the .NET environment (and Mono, its open-source counterpart).
F# applications can readily run on all platforms (computers or mobile devices) supported by the many
libraries and modules of CLR (or Mono).

A. Canciani, P. Degano, G.-L. Ferrari & L. Galletta 13

Our strategy has been to identify in the MLCoDa code the constructs not native in F# through suitable
metaprogramming annotations. These annotations drive a JIT compilation of the adaptation constructs
by reflecting over the code, while the rest of the code is compiled directly. Therefore the whole compiler
of MLCoDa integrates the original F# with the JIT compilation steps. As a result, MLCoDa becomes an
ordinary .NET library, usable by any other (F# compatible) application. This prototypical implementa-
tion of MLCoDa shows that the .NET type system allows us to solve the impedance mismatch between
the functional and the logical components of MLCoDa with a minimal effort.

Our compilation strategy is general and could be followed regardless of the host implementation
language, although some implementation details, such as the generation of new identifiers, may require
more involved realisations in host languages other than F#. In addition, our implementation of MLCoDa-
specific constructs would work independently from the ability to perform JIT compilation in the hosting
framework. Consequently, an Ahead-Of-Time (AOT) compilation approach would work as well, so
possibly giving feedback to the programmer. Typically, this would require to implement suitable static
analyses, e.g. the two-step analysis of [9] that guarantees reliable adaptation of the application to contexts
it will be hosted at runtime. Both in JIT and AOT compilation, our approach allows for other different
extensions, e.g. to enable code to easily interact with a model checker or other verifiers.

As a final remark, we recall that COP has been proposed by [23] as a basis for implementing the
software architecture of autonomic element proposed by [16]. During an execution run, our JIT imple-
mentation only compiles those code fragments that the autonomic component needs to adapt, and skips
those functions that are not invoked.

6 Conclusions

We presented an extension of F# implementing the COP language MLCoDa, that has a functional com-
ponent for computing and a logical one for representing and querying the context. Our implementa-
tion exploits metaprogramming mechanisms, such as reflection and quotation, to build a JIT compiler.
Functions containing MLCoDa adaptation code are marked by the programmer, so driving an automatic
translation to pure F# code. Our approach guarantees us a natural interaction between the code using
the context and legacy code. This is particularly valuable since MLCoDa code can run on all platforms
supported by .NET and can access to all its libraries. Besides the implementation of MLCoDa itself, our
JIT compilation schema scales to other host languages, and also to other different extensions.

We plan to extend our work along different lines. First, we will equip our implementation with
the two-step static analysis of [9]. Besides the case studies available5 we will assess our approach on
other larger case studies. Also benchmarking and comparing our implementation with others in the
literature [6] is of interest.

More on the linguistic aspects, in the current setting the context is only updated by the applications,
either by tell or retract. As experienced on the case study of the e-Healthcare system however, the
context can evolve independently of the applications, emitting events to signal the changes — implicitly
representing the presence of many different applications sharing the same context. The literature has a
great deal of work on this topic, among which [1, 4]. The major extensions to MLCoDa for supporting
these aspects include at least the ability of handling the concurrency between the context evolution and
the running application, as well as primitives for react and adapt to events.

5 See https://github.com/vslab/fscoda.

https://github.com/vslab/fscoda

14 A Context-Oriented Extension of F#

References

[1] Tomoyuki Aotani, Tetsuo Kamina & Hidehiko Masuhara (2011): Featherweight EventCJ: a core calculus
for a context-oriented language with event-based per-instance layer transition. COP ’11, ACM, New York,
NY, USA, pp. 1:1–1:7, doi:10.1145/2068736.2068737.

[2] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke & Michael Perscheid (2009): A compari-
son of context-oriented programming languages. In: International Workshop on Context-Oriented Program-
ming, COP ’09, ACM, New York, NY, USA, pp. 6:1–6:6, doi:10.1145/1562112.1562118.

[3] Malte Appeltauer, Robert Hirschfeld & Jens Lincke (2013): Declarative Layer Composition with The JCop
Programming Language. Journal of Object Technology 12(2), pp. 4:1–37, doi:10.5381/jot.2013.12.2.a4.

[4] Engineer Bainomugisha (2012): Reactive method dispatch for Context-Oriented Programming. Ph.D. thesis,
Comp. Sci. Dept., Vrije Universiteit Brussel.

[5] Luciano Baresi, Elisabetta Di Nitto & Carlo Ghezzi (2006): Toward Open-World Software: Issue and Chal-
lenges. Computer 39(10), pp. 36–43, doi:10.1109/MC.2006.362.

[6] Radu Calinescu, Carlo Ghezzi, Marta Z. Kwiatkowska & Raffaela Mirandola (2012): Self-adaptive software
needs quantitative verification at runtime. Commun. ACM 55(9), pp. 69–77, doi:10.1145/2330667.2330686.

[7] S. Ceri, G. Gottlob & L. Tanca (1989): What You Always Wanted to Know About Datalog (And Never Dared
to Ask). IEEE Trans. on Knowl. & Data Eng. 1(1), doi:10.1109/69.43410.

[8] Pascal Costanza & Robert Hirschfeld (2005): Language Constructs for Context-oriented Programming: An
Overview of ContextL. In: Proceedings of the 2005 Symposium on Dynamic Languages, DLS ’05, ACM,
New York, NY, USA, pp. 1–10, doi:10.1145/1146841.1146842.

[9] Pierpaolo Degano, Gian-Luigi Ferrari & Letterio Galletta (2014): A Two-Phase Static Analysis for Reliable
Adaptation. In Dimitra Giannakopoulou & Grenoble Gwen Salaün, editors: 12th International Conference on
Software Engineering and Formal Methods, SEFM 2014, Lecture Notes in Computer Science 8702, Springer,
pp. 347–362, doi:10.1007/978-3-319-10431-7_28.

[10] Pierpaolo Degano, Gian-Luigi Ferrari & Letterio Galletta (2014): A Two-Component Language for COP. In:
Proceedings of 6th International Workshop on Context-Oriented Programming, COP’14, ACM, New York,
NY, USA, pp. 6:1–6:7, doi:10.1145/2637066.2637072.

[11] Brecht Desmet, Jorge Vallejos, Pascal Costanza, Wolfgang De Meuter & Theo D’Hondt (2007): Context-
Oriented Domain Analysis. In Boicho N. Kokinov, Daniel C. Richardson, Thomas Roth-Berghofer & Laure
Vieu, editors: Modeling and Using Context, Lecture Notes in Computer Science 4635, Springer Berlin Hei-
delberg, pp. 178–191, doi:10.1007/978-3-540-74255-5_14.

[12] Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz, Jean-Christophe Libbrecht & Julien Gof-
faux (2011): Subjective-C. In Brian Malloy, Steffen Staab & Mark van den Brand, editors: Software Lan-
guage Engineering, Lecture Notes in Computer Science 6563, Springer Berlin Heidelberg, pp. 246–265,
doi:10.1007/978-3-642-19440-5_15.

[13] Robert Hirschfeld, Pascal Costanza & Oscar Nierstrasz (2008): Context-oriented Programming. Journal of
Object Technology 7(3), pp. 125–151, doi:10.5381/jot.2008.7.3.a4.

[14] Tetsuo Kamina, Tomoyuki Aotani & Hidehiko Masuhara (2013): A Unified Context Activation Mechanism.
In: Proceedings of the 5th International Workshop on Context-Oriented Programming, COP’13, ACM, New
York, NY, USA, pp. 2:1–2:6, doi:10.1145/2489793.2489795.

[15] Tetsuo Kamina, Tomoyuki Aotani, Hidehiko Masuhara & Tetsuo Tamai (2014): Context-oriented Soft-
ware Engineering: A Modularity Vision. MODULARITY ’14, ACM, New York, NY, USA, pp. 85–98,
doi:10.1145/2577080.2579816.

[16] Jeffrey O. Kephart & David M. Chess (2003): The Vision of Autonomic Computing. IEEE Computer 36(1),
pp. 41–50, doi:10.1109/MC.2003.1160055.

http://dx.doi.org/10.1145/2068736.2068737
http://dx.doi.org/10.1145/1562112.1562118
http://dx.doi.org/10.5381/jot.2013.12.2.a4
http://dx.doi.org/10.1109/MC.2006.362
http://dx.doi.org/10.1145/2330667.2330686
http://dx.doi.org/10.1109/69.43410
http://dx.doi.org/10.1145/1146841.1146842
http://dx.doi.org/10.1007/978-3-319-10431-7_28
http://dx.doi.org/10.1145/2637066.2637072
http://dx.doi.org/10.1007/978-3-540-74255-5_14
http://dx.doi.org/10.1007/978-3-642-19440-5_15
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://dx.doi.org/10.1145/2489793.2489795
http://dx.doi.org/10.1145/2577080.2579816
http://dx.doi.org/10.1109/MC.2003.1160055

A. Canciani, P. Degano, G.-L. Ferrari & L. Galletta 15

[17] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm & William G. Griswold (2001): An
Overview of AspectJ. In Jørgen Lindskov Knudsen, editor: ECOOP 2001 — Object-Oriented Programming,
Lecture Notes in Computer Science 2072, Springer Berlin, pp. 327–354, doi:10.1007/3-540-45337-7_18.

[18] Seng W. Loke (2004): Representing and Reasoning with Situations for Context-aware Pervasive Computing:
a Logic Programming Perspective. Knowl. Eng. Rev. 19(3), pp. 213–233, doi:10.1017/S0269888905000263.

[19] Martin von Löwis, Marcus Denker & Oscar Nierstrasz (2007): Context-oriented Programming: Beyond
Layers. In: Proceedings of the 2007 International Conference on Dynamic Languages: In Conjunction with
the 15th International Smalltalk Joint Conference 2007, ICDL ’07, ACM, New York, NY, USA, pp. 143–156,
doi:10.1145/1352678.1352688.

[20] Giorgio Orsi & Letizia Tanca (2011): Context Modelling and Context-Aware Querying. In O. Moor, G. Gott-
lob, T. Furche & A. Sellers, editors: Datalog Reloaded, LNCS 6702, Springer, pp. 225–244, doi:10.1007/978-
3-642-24206-9_13.

[21] Andres J. Ramirez & Betty H. C. Cheng (2010): Design Patterns for Developing Dynamically Adaptive
Systems. In: Proceedings of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’10, ACM, New York, NY, USA, pp. 49–58, doi:10.1145/1808984.1808990.

[22] Mazeiar Salehie & Ladan Tahvildari (2009): Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst. 4(2), pp. 14:1–14:42, doi:10.1145/1516533.1516538.

[23] Guido Salvaneschi, Carlo Ghezzi & Matteo Pradella (2011): Context-Oriented Programming: A Program-
ming Paradigm for Autonomic Systems. CoRR abs/1105.0069. Available at http://arxiv.org/abs/
1105.0069.

[24] Guido Salvaneschi, Carlo Ghezzi & Matteo Pradella (2013): An Analysis of Language-Level Support for
Self-Adaptive Software. ACM Trans. Auton. Adapt. Syst. 8(2), pp. 7:1–7:29, doi:10.1145/2491465.2491466.

[25] Jorge Vallejos, Sebastián González, Pascal Costanza, Wolfgang De Meuter, Theo D’Hondt & Kim Mens
(2010): Predicated Generic Functions. In Benoît Baudry & Eric Wohlstadter, editors: Software Composition,
Lecture Notes in Computer Science 6144, Springer Berlin Heidelberg, pp. 66–81, doi:10.1007/978-3-642-
14046-4_5.

[26] Pamela Zave & Michael Jackson (1997): Four Dark Corners of Requirements Engineering. ACM Trans.
Softw. Eng. Methodol. 6(1), pp. 1–30, doi:10.1145/237432.237434.

http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1017/S0269888905000263
http://dx.doi.org/10.1145/1352678.1352688
http://dx.doi.org/10.1007/978-3-642-24206-9_13
http://dx.doi.org/10.1007/978-3-642-24206-9_13
http://dx.doi.org/10.1145/1808984.1808990
http://dx.doi.org/10.1145/1516533.1516538
http://arxiv.org/abs/1105.0069
http://arxiv.org/abs/1105.0069
http://dx.doi.org/10.1145/2491465.2491466
http://dx.doi.org/10.1007/978-3-642-14046-4_5
http://dx.doi.org/10.1007/978-3-642-14046-4_5
http://dx.doi.org/10.1145/237432.237434

	Introduction
	Design of MLCoDa
	A simulator of an e-Healthcare system
	Internals of a prototype compiler
	Discussion
	Conclusions

