
Disjunctive Information Flow for Communicating
Processes∗

Ximeng Li1, Flemming Nielson1, Hanne Riis Nielson1, and
Xinyu Feng2

1 Technical University of Denmark
{ximl, fnie, hrni}@dtu.dk

2 University of Science and Technology of China
xyfeng@ustc.edu.cn

Abstract

The security validation of practical computer systems calls for the ability to specify and verify
information flow policies that are dependent on data content. Such policies play an important
role in concurrent, communicating systems: consider a scenario where messages are sent to
different processes according to their tagging. We devise a security type system that enforces
content-dependent information flow policies in the presence of communication and concurrency.
The type system soundly guarantees a compositional noninterference property, which in turn
guarantees a top-level security property for systems under the control of deterministic schedulers.
The proofs of three main theoretical results out of all four are formalized [19] in the Coq proof
assistant [8].

1998 ACM Subject Classification "F.3.1 Specifying and Verifying and Reasoning about Pro-
grams"

Keywords and phrases Information flow, Disjunctive Policies, Concurrency, Communication

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Language-based information flow control [27] aims to provide end-to-end guarantees against
inadvertant information leakage in the execution of programs. The security enforcement
is usually achieved by static type systems [30], dynamic monitoring [12], or a mixture of
both [3]. The security guarantee is usually provided by noninterference properties (e.g.,
[26, 9]) requiring that the public parts of a system should stay invariant against variations
in the confidential parts [7]. The area has gained practical impact in securing voting
systems [6], cryptographic implementations such as RSA encryption (e.g., [27]), and in the
end-to-end confidentiality enforcement in real-world programming languages like PHP [17]
and JavaScript [14].

∗ This work was partially supported by SESAMO, a European Artemis project, and NordSecMob.

© Ximeng Li, Flemming Nielson, Hanne Riis Nielson and Xinyu Feng;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Disjunctive Information Flow for Communicating Processes

In recent years, an emerging concern in information flow control is the enforcement of
content-dependent flow policies [5, 1, 20]: different security classes are assigned to variables
under different contents they hold. Content-dependent policies are useful in concurrent
systems — consider processes exchanging messages whose destinations depend on their
tagging. However, despite all the aforementioned existing work (all in a sequential setting),
the interaction between content-dependent policies on the one hand, and concurrency and
communication on the other, is largely unexplored so far.

In this paper, we enforce content-dependent information flow policies in a concurrent language,
where processes make use of local variables and communicate with each other to share
information. The selection of relevant policies at each program point is achieved with the help
of a Hoare logic [2] component in our information flow type system. We consider synchronous
communication much in the manner of a process calculus like CCS [23]. The types of
communication channels act as bridges between the modular typing of the individual processes.
The presence and content of communication behaviors are treated separately (e.g., [21, 18]),
which leads to a more flexible confidentiality enforcement, and a more intuitive formulation
of noninterference property (termed “communication-aware security”) that is bisimulation-
based, progress-sensitive [15], and compositional. This notion of noninterference further
guarantees a scheduler-dependent noninterference property, under a class of deterministic
schedulers.

This paper is structured as follows. A motivating example where a multiplexer and a
demultiplexer communicate with each other, is introduced in Section 2. We then introduce
the simple concurrent language used throughout our development in Section 3. Our security
policies, termed disjunctive policies, are introduced in Section 4. This is followed by the
presentation of our information flow type system in Section 5, and noninterference property
in Section 6. The impact of deterministic schedulers is then studied in Section 7. The security
of the motivating example is guaranteed by its well-typedness. We conclude and discuss
certain elements of our development and related work in Section 8.

The subject reduction result of our type system (Theorem 7), the compositionality of
communication-aware security (Theorem 11), and the soundness of the type system w.r.t.
communication-aware security (Theorem 12), have been formally proved [19] in the Coq proof
assistant [8]. This proof is also sketched in the appendix for the reader to get the intuition. The
proof that communication-aware security guarantees security under deterministic scheduling
(Theorem 19), is given in detail in the appendix (although not formalized in Coq).

2 Motivating Example

The MILS security architecture [25] aims to achieve controlled information flow between
different system partitions that share certain resources. It has wide applications in domains
such as avionics. A typical kind of shared component in MILS systems is a multiplexer (e.g.,
[11]) that directs confidential input from partition I to confidential output to partition II,
and public input from partition III to public output to partition IV.

Consider a (simple-minded) concretization of this scenario with the processes in Figure 1.
A multiplexer process (SM) wraps up the source data in x1 or x2, along with tags 1 and 2
respectively, and forwards it over the dyadic channel c to a demultiplexer process (SD). The

X. Li, F. Nielson, H. R.Nielson, and X. Feng 3

demultiplexer will then unwrap the data and forward it to the sinks z1 or z2, depending on
the tag value.

Multiplexer (SM) : while true do
c!(1, x1);
c!(2, x2)

Demultiplexer (SD) : while true do
c?(y, z);
if y = 1

then z1 := z

else z2 := z

Figure 1 The code for the multiplexer and the demultiplexer

Suppose the variable x1 is confidential, whereas x2 is public. The information flow analysis
should then reveal that z1 needs to be confidential, while z2 can be public.

For modularity reasons, a type-based analysis needs to assign a confidentiality level to the
channel c for SM and SD to be analyzed separately. In the demultiplexer process SD, both
z1 and z2 obtain data from c, depending on whether the tag is 1 or not. It would then
be desirable for the type system to have the knowledge that either c is confidential and
communicating (1,_), or c is public and communicating (2,_). This is precisely what our
disjunctive policies aim to capture, in the setting of concurrent systems.

Moreover, when it is said that “c is confidential”, what is actually meant is that it communic-
ates confidential content. The observation of the mere presence of any communication action
over c, without observing the content communicated, does not jeopardize the confidentiality
of x1. We thus distinguish between the presence and content of channel communication (e.g.,
[21, 18]), for a more fine-grained, permissive enforcement of our disjunctive policies.

3 The Language

We introduce the concurrent imperative language to be used, and specify its structural
operational semantics.

Syntax: A system Σ consists of a fixed number of concurrent processes. All variables are
local to their own processes, and information sharing is achieved by means of communication.

All processes are assumed to have identifiers in {1, 2, ...}. For a system Σ with the set Pid(Σ)
of process identifiers, its set of variables can thus be denoted by VarΣ =

⊎
i∈Pid(Σ) VarΣ,i

(] for disjoint union), where the process with identifier i can only use variables from VarΣ,i.
For communication, the set of polyadic channels is PCh and the set of atomic channels is
Ch = {c.1, · · · , c.m | c ∈ PCh, and c has arity m}.

We write x, y, z for variables, X for sets of variables, c for either a polyadic channel name or
an atomic channel name (it will always be clear from the context which is the case), n for
unspecified constants, op for unspecified arithmetic operators, rel for unspecified relational
operators, and tt for the boolean constant denoting truth. The set of variables contained in
an arithmetic expression a (resp. boolean expression b) is fv(a) (resp. fv(b)).

4 Disjunctive Information Flow for Communicating Processes

Table 1 Small-step semantics of processes and systems.

`i 〈skip;σ〉 τ−→ 〈nil;σ〉 `i 〈x := a;σ〉 τ−→ 〈nil;σ[x 7→ A[[a]]σ]〉

`i 〈c!~a;σ〉 c!~v−→ 〈nil;σ〉 if ~v = A[[~a]]σ `i 〈c?~x;σ〉 c?~v−→ 〈nil;σ[~x 7→ ~v]〉

`i 〈S1;σ〉 α−→ 〈S′1;σ′〉
`i 〈S1;S2;σ〉 α−→ 〈S′1;S2;σ′〉

if S′1 6= nil
`i 〈S1;σ〉 α−→ 〈nil;σ′〉
`i 〈S1;S2;σ〉 α−→ 〈S2;σ′〉

`i 〈if b then S1 else S2;σ〉 τ−→ 〈S1;σ〉 if B[[b]]σ = tt

`i 〈if b then S1 else S2;σ〉 τ−→ 〈S2;σ〉 if B[[b]]σ = ff

`i 〈while b doS;σ〉 τ−→ 〈(S; while b doS);σ〉 if B[[b]]σ = tt

`i 〈while b doS;σ〉 τ−→ 〈nil;σ〉 if B[[b]]σ = ff

`i 〈Si;σ〉
α−→ 〈S′i;σ′〉

〈i : Si;σ〉
α−→i 〈S′i;σ′〉

〈Σ1;σ1〉
cρ~v−→i 〈Σ′1;σ′1〉 〈Σ2;σ2〉

cρ̃~v−→j 〈Σ′2;σ′2〉

〈Σ1||Σ2;σ1] σ2〉
τ−→i,j 〈Σ′1||Σ′2;σ′1] σ′2〉

where ρ ∈ {!, ?}

〈Σ1;σ1〉
α−→η 〈Σ′1;σ′1〉

〈Σ1||Σ2;σ1] σ2〉
α−→η 〈Σ′1||Σ2;σ′1] σ2〉

〈Σ2;σ2〉
α−→η 〈Σ′2;σ′2〉

〈Σ1||Σ2;σ1] σ2〉
α−→η 〈Σ1||Σ′2;σ1] σ′2〉

〈Σ;σ〉 α−→η 〈Σ′;σ′〉

〈Σ \ Ω;σ〉 α−→η 〈Σ′ \ Ω;σ′〉
if ch(α) 6∈ Ω

The syntax of our language is given by:

a ::= n | x | a1 op a2

b ::= tt | a1 rel a2 | b1 ∧ b2 | ¬b

S ::= nil | skip | x := a | S1;S2 | if b then S1 else S2 | while b doS | c?~x | c!~a
Σ ::= i : Si | Σ1||Σ2 | Σ \ Ω

Sequential processes S can contain communication binders: c!~a for output of the vector ~a
of arithmetic expressions over the polyadic channel c and c?~x for input from the polyadic
channel c into the vector ~x of variables. The process nil is an inert process that cannot
perform any computation.

Systems are composed of concurrent, communicating processes. The construct i : Si represents
a process running the statement Si, with process identifier i. The construct Σ1||Σ2 represents
two systems running concurrently. We require Pid(Σ1) ∩Pid(Σ2) = ∅ for the wellformedness
of Σ1||Σ2. Finally the construct Σ \ Ω represents the system that can perform all the
input/output actions of Σ provided that those actions are not over the polyadic channels
in Ω. It allows to specify whether each channel used by a process is shared with another
process or with the environment1.

Semantics: The structural operational semantics of our language is presented in Table 1.
In order to handle communication, the transitions are annotated with the action being
performed; an action α takes one of three forms: c!~v (for output over c), c?~v (for input over
c) or τ (for the remaining cases) where ~v ∈ Val? is the vector of values being communicated

1 Readers familiar with process calculi will find Σ \ Ω similar to the restriction operator of CCS [23].

X. Li, F. Nielson, H. R.Nielson, and X. Feng 5

over the channel. We tacitly assume that arities match without having explicitly to require
this in the semantics. The evaluation of arithmetic and boolean expressions is specified using
the functions A and B, respectively.

The general form of the transitions for processes is `i 〈S;σ〉 α−→ 〈S′;σ′〉, where i is the
identifier of the process being executed, and σ, σ′ ∈ VarΣ,i → Val. The transition rules are
fairly standard.

Lifting the semantics to systems, we have configurations of the form 〈Σ;σ〉. It is tacitly
assumed that σ ∈ StΣ, where StΣ is VarΣ → Val. The transitions are of the form
〈Σ;σ〉 α−→η 〈Σ′;σ′〉 where η is the list of identifiers for the processes executed. For a polarity
! or ?, we have !̃ =? and ?̃ =!. For a mapping A, we write DA for its domain. For two
mappings A and B such that DA ∩DB = ∅, we denote by A]B the mapping with domain
DA]DB , such that (A]B)(i) =

{
A(i) (if i ∈ DA)
B(i) (if i ∈ DB) . Then the transition rules for systems are

mostly self-explanatory. In particular, the final rule says that 〈Σ \ Ω; σ〉 can perform an
action α of 〈Σ;σ〉 if the channel used by α is not in Ω.

I Example 1. The combination of the multiplexer and demultiplexer considered in Section 2
can be represented by the system ΣMD = (1 : SM || 2 : SD) \ {c}. J

4 Security Policies

Each confidentiality level is taken from the two-point confidentiality lattice LabS = ({L,H},v
) where L v H, throughout our development. The level H (resp. L) represents high (resp.
low) confidentiality. A generalization to arbitrary security lattices is straightforward but
induces notational sophistication; hence we stay with LabS.

For systems Σ, we introduce policy environments P such that for each i ∈ Pid(Σ), P(i) is
a set of policies for the variables in VarΣ,i. Each variable policy P ∈ P(i) consists of two
components, PS : VarΣ,i → LabS and PV : LabF, where PS contains the confidentiality level
of each variable in VarΣ,i and PV is a logical formula describing the possible values of these
variables. Given a set X ⊆ VarΣ,i, we define PS[X] as

⊔
x∈X PS(x). We denote by P EP the

fact that P ∈ {(
⊎
i∈DP PiS,

∧
i∈DP PiV) | ∀i ∈ DP : Pi ∈ P(i)}.

We also allow to specify a (global) set Pch of channel policies. The set Pch has a distin-
guished member P ◦ : PCh→ LabS that gives the confidentiality level of the “presence” of
communications over each polyadic channel. Apart from P ◦, there is at least one content
policy P • ∈ Pch. Each P • has two components P •S : Ch → LabS and P •V : Ch → LabV,
where for each atomic channel c, P •S (c) is the confidentiality level of the communication
contents over c, and P •V(c) is the set of values potentially communicated over c.

For a variable policy P , PV can capture “relational constraints” between different variables.
For instance, given an output c!(x− y), it is valid to have PV = (p(x) = p(y)) where p(−) is
the parity function. Correspondingly, a channel policy P • may come with the set of even
numbers for P •V(c.1).

Each P(i) (i ∈ Pid(Σ)) resembles a disjunctive formula of variable policies (where each policy
is a conjunction over the confidentiality and content information provided by it). The same
analogy is enjoyed by the set Pch

• = {P • | P • ∈ Pch} of content policies for channels. Hence

6 Disjunctive Information Flow for Communicating Processes

we term our policies disjunctive policies. Hereafter, the parameterization on Pch in our
formulations will often be elided since Pch is treated as a global constant. The distinguished
presence policy P ◦ ∈ Pch will be left implicit for the same reason.

I Example 2. We will use the following policies for the multiplexer example presented in
Section 2, where Z is the set of all integers.

PMD(1)= {Pm = (x1 : H; x2 : L, tt)}
PMD(2)= {P 1

d = (y : L; z : H; z1 : H; z2 : L, y = 1),
P 2

d = (y : L; z : L; z1 : H; z2 : L, y 6= 1)}

Pch
MD = {P ◦ = (c : L),

P •1 = (c.1 : L; c.2 : H, c.1 : {1}; c.2 : Z),
P •2 = (c.1 : L; c.2 : L, c.1 : {2}; c.2 : Z)}

For convenience of reference, the policies are named. Take the policy Pm ∈ P(1) for example,
we have PmV = tt and PmS = [x1 7→ H][x2 7→ L]. The syntax with colons and semi-colons is
used for confidentiality policy components such as PmS for conciseness. J

We next define the satisfaction of variable policies by states (σ |= P), and the satisfaction
of channel policies by actions (α |=ρ P

•). Our concern here is what policies are relevant
according to the memory content or communication content. For a vector ~v, we write |~v| for
its total number of components, and vj for the j-th one.

I Definition 3 (Satisfaction).

σ |= P , σ |= PV (σ is a model of the formula PV)
α |=ρ P

• , P • ∈ Pch ∧ ∀c, ~v : α = cρ~v ⇒ ∀j s.t. 1 ≤ j ≤ |~v| : vj ∈ P •V (c.j)

For channel policies, the satisfaction relation |=ρ is parameterized with a polarity ρ. The
intuition is that the check on content is turned on only when the polarity of α is ρ. In this
case it is required that the j-th value communicated over the polyadic channel of α should
indeed be described by the value component of P • for the atomic channel c.j. If α does not
have the polarity ρ, then nothing is required.
I Remark. The way our policies work is the easiest to understand when the content in-
formation of different policies is disjoint as in Example 2 (although this is not a restriction
technically), In this case, the policy in effect at each point of execution will be uniquely
determined by the state or the communicated vector of values, via the satisfaction relation.

5 The Type System
We specify a type system for ensuring that a system Σ respects the information flow policies
given by P (such that DP = Pid(Σ)) and Pch. To deal with the value components PV of
policies P , the type system is integrated with a Hoare logic for reasoning about the values of
variables [2]. The typing rules for processes and systems are specified in Table 2 in order.

The typing of processes: The typing judgements for processes are of the form X, l1 `K
{φ}S {φ′} : Y, l2 where X is a set of variables that may incur implicit flows [10], Y is a
set of variables whose information can be leaked through progress, K is the set of variable
policies for the process S, and φ and φ′ are the pre- and post-conditions of S in the form
of logical formulae over the variables local to S. In addition, l1 and l2 are the levels of
information that can be leaked through blocked communication attempts (due to inability of

X. Li, F. Nielson, H. R.Nielson, and X. Feng 7

Table 2 Information flow type system for processes and systems.

X, l `K {φ} nil {φ} : ∅, L X, l `K {φ} skip {φ} : ∅, L

X, l `K {φ[a/x]}x := a {φ} : ∅, L
if ∀P ∈ K : PV ∧ φ[a/x]⇒ ∃P ′ ∈ K : P [x 7→ l t PS[fv(a) ∪X]]S � P ′[a/x]V

X, l `K {φ}S1 {ρ} : Y1, l1 X ∪ Y1, l t l1 `K {ρ}S2 {ψ} : Y2, l2
X, l `K {φ}S1;S2 {ψ} : Y1 ∪ Y2, l1 t l2

X ∪ fv(b), l `K {φ ∧ b}S1 {ψ} : Y1, l1 X ∪ fv(b), l `K {φ ∧ ¬b}S2 {ψ} : Y2, l2
X, l `K {φ} if b then S1 else S2 {ψ} : Y1 ∪ Y2 ∪ fv(b), l1 t l2

Y, l `K {φ ∧ b}S {φ} : Y, l
X, l `K {φ}while b doS {φ ∧ ¬b} : Y, l if X ∪ fv(b) ⊆ Y

X, l `K {φ} c!~a {φ} : ∅, l′ if l v P ◦(c) v l′ and
∀P ∈ K : PV ∧ φ⇒ (PS[X] v P ◦(c) ∧ ∃P ′ ∈ K, P • ∈ Pch :

P [(c.j 7→ PS(aj))j]S � (P ′S] P •S , P ′V ∧
∧
j
aj ∈P •V (c.j)))

X, l `K {∀~x : φ} c?~x {φ} : ∅, l′ if l v P ◦(c) v l′ and
∀P ∈ K : PV ∧ (∀~x : φ)⇒ (PS[X] v P ◦(c) ∧ ∀P • ∈ Pch : ∀~v s.t.

∧
j
vj ∈ P •(c.j) :

∃P ′ ∈ K : P [(xj 7→ P •S (c.j) t P ◦(c))j]S � P ′[(vj/xj)j]V)

X ′, l′1 `K {φ′}S {ψ′} : Y ′, l′2
X, l1 `K {φ}S {ψ} : Y, l2

if (φ⇒ φ′) ∧ (ψ′ ⇒ ψ) ∧
X ⊆ X ′ ∧ Y ′ ⊆ Y ∧ l1 v l′1 ∧ l′2 v l2

∅, L `K {φ}Si {ψ} : Y, l′

[i 7→ K] ` {[i 7→ φ]} i : Si {[i 7→ ψ]} ifnip(K)
P ` {Φ}Σ {Ψ}
P ` {Φ}Σ \ Ω {Ψ}

P1 ` {Φ1}Σ1 {Ψ1} P2 ` {Φ2}Σ2 {Ψ2}
P1] P2 ` {Φ1] Φ2}Σ1||Σ2 {Ψ1]Ψ2}

synchronization), before reaching S, and within S, respectively. The levels l1 and l2 become
H when encountering communication channels whose presence levels are H.

In Table 2, P � P ′ represents PS v P ′S ∧ PV ⇒ P ′V, where PS v P ′S if and only if ∀u ∈
DPS∩DP ′S

:PS(u) v P ′S(u). We write P [x 7→ l]S for (PS[x 7→ l], PV), which is an update if
x ∈ DPS and an extension otherwise, P [u/x]V for (PS, PV[u/x]) where u is an arithmetic
expression, P ∧ f for (PS, PV ∧ f) where f is a logical formula, and v for the numeral of the
value v.

The Hoare logic part of the type system is fairly simple since all variables are local. Most
typing rules strengthen a precondition φ to the formula φ ∧ PV that allows to select the
relevant variable policies P using their content information PV. We elaborate on the rules
for assignment, output and input.

The typing rule for assignment requires the existence of a post-policy P ′ for each selected
pre-policy P . This policy P ′ should satisfy l t PS[fv(a) ∪X] v P ′S(x), and for all variables
y different than x, PS(y) v P ′S(y) should hold. Requiring l v P ′S(x) and PS[X] v P ′S(x) is
to capture implicit flows [10]. On the other hand, under the pre-condition PV ∧ φ[a/x], it
is required that PV ⇒ P ′V[a/x]. In other words, PV ∧ φ[a/x] ⇒ P ′V[a/x] should hold. This
guarantees that for a local state σ satisfying P and the precondition φ[a/x], the post state
derived from σ after the assignment satisfies the post policy P ′.

I Example 4. We have {y}, L `PMD(2) {y = 1} z1 := z {y = 1} : ∅, L for the assignment
z1 := z in the demultiplexer process SD of Figure 1. Essentially, it needs to be shown that
no matter if P is instantiated with P 1

d or P 2
d , we can find an appropriate policy in PMD(2)

for the instantiation of P ′, satisfying the side conditions of the typing rule for assignment.

8 Disjunctive Information Flow for Communicating Processes

First instantiate P with P 1
d . We still use P 1

d for P ′, and the side condition specializes to
y = 1⇒ P 1

d [z1 7→ L t P 1
dS[{y, z}]] � P 1

d [z/z1]V. This condition further expands to the following,
which holds.

y = 1 ⇒ ((y : L; z : H; z1 : H; z2 : L)[z1 7→ H], y = 1)
� ((y : L; z : H; z1 : H; z2 : L), (y = 1)[z/z1]).

Next instantiate P with P 2
d . The side condition specializes to y = 1 ∧ y 6= 1 ⇒ ..., which

vacuously holds. J

The typing rule for output imposes the constraint l v P ◦(c) v l′. Here P ◦(c) v l′ takes care
of the possibility for the output to be blocked by the environment (in line with the use of
synchronous communication, the treatment of output is “symmetric” to that of input; hence
the possiblity of blocked output is also considered). In more detail, the presence/absence
of the output can leak information if the subsequent computation is not kept confidential.
This kind of leakage is in a sense analogous to the leakage created by looping. On the
other hand, l v P ◦(c) takes care of the possibility that a previously blocked communication
can be revealed through the indirect blockage (absence) of the current output. Next, the
constraint PS[X] v P ◦(c) is concerned with the implicit flows from conditionals having
variables in X to the presence of the output. Finally, the seemingly involved constraint
P [(c.j 7→ PS(aj))j]S � (P ′S] P •S , P ′V ∧

∧
j
aj ∈ P •V (c.j)) can be understood by comparing the

output c!~a to the assignment c := ~a.

The typing rule for input uses constraints about the presence label P ◦(c) of the channel c in
a way similar to the rule for output does. Its last constraint P [(xj 7→ P •S (c.j) t P ◦(c))j]S �
P ′[(vj/xj)j]V, requires P ◦(c) v P ′S(xj) for all j ∈ {1, 2, ..., |c|}, because the presence of the
input leads to the modification of the variable xj . The remaining part of this constraint can
be understood by comparing the input c?~x to the assignment ~x := c.

We remark on the typing rule for if, where the set fv(b) is unioned into the “progress set”,
resulting in fv(b) ∪ Y1 ∪ Y2. This guarantees a noninterference condition where two systems
advance in a manner close to “lock-step” execution, thereby facilitating the articulation of
the security guarantees under scheduling. Similar treatment of the “termination effects” of if
can be found in [4, 28].

The typing of systems: The typing judgements for systems are of the form P ` {Φ}Σ{Ψ}.
Here P is a policy environment for the system Σ, and for each i ∈ Pid(Σ), Φ(i) and Ψ(i) are
the pre-condition and post-condition, respectively, for the process with identifier i in Σ. We
also denote by TΣ the mapping such that DTΣ = Pid(Σ) and ∀i ∈ DTΣ : TΣ(i) = tt. The
typing rules follow patterns that are fairly straightforward.

The side condition nip(K) of the rule for i : Si is a “healthiness” constraint saying that
the choice of policies cannot be decided by confidential information. This is desirable since
confidentiality levels have access control implications. A public observer would be able to
deduce information about confidential variables based on whether it is allowed to access the
values of certain variables, if confidential information had interference on the policies in use.

The predicate nip(−) is expressed with the help of the notations σ1
K= σ2 and cρ′~v1

K=
ρ
cρ′~v2.

The notation σ1
K= σ2 represents that σ1 and σ2 have the same domain and map each variable

that is low with respect to every policy in K to the same value. Similarly, cρ′~v1
K=
ρ
cρ′~v2 says

that if ρ is the same as ρ′, then the atomic channels of c that are low with respect to every

X. Li, F. Nielson, H. R.Nielson, and X. Feng 9

policy in K should communicate the same values.

I Definition 5 (Low equivalence parameterized by sets of policies).

σ1
K= σ2 , Dσ1 = Dσ2 ∧ ∀x ∈ Dσ1 : (∀P ∈ K : PS(x) = L)⇒ σ1(x) = σ2(x)

cρ′~v1
K=
ρ
cρ′~v2 , ∀j : (ρ = ρ′ ∧ ∀P ∈ K : PS(c.j) = L)⇒ v1j = v2j

Formally, we have:

nip(K) , ∀σ1, σ2 : σ1
K= σ2 ⇒ (∀P ∈ K : σ1 |= P ⇔ σ2 |= P) ∧

∀c, ~v, ~v′ : c!~v
Pch
•=
!
c!~v′ ⇒ (∀P • : c!~v |=! P

• ⇔ c!~v′ |=! P
•).

I Example 6. The system ΣMD of Example 1 can be typed using the policies given in
Example 2. It is not difficult to verify that nip(PMD(1)) and nip(PMD(2)) hold, and that
PMD ` {TΣMD}ΣMD {TΣMD} can be established. J

Subject reduction: Subject reduction [24] ensures that a type system is technically safe,
by asserting that well-typedness of a system is preserved under its execution. In Theorem 7,
σ |= Φ represents ∀i ∈ DΦ : σ |= Φ(i) and all un-quantified symbols are implicitly universally
quantified. When an input is performed, the existence of channel policies describing the
values received are relied on to ensure the satisfaction of the pre-condition Φ′ of the derived
system Σ′, by the resulting state σ′.

I Theorem 7 (Subject Reduction). If P ` {Φ}Σ {Ψ}, 〈Σ;σ〉 α−→η 〈Σ′;σ′〉, σ |= Φ, P EP and
σ |= P , then
1. ∃P • : α |=! P

•, and

2. if ∃P • : α |=? P
•, then ∃P ′ EP,Φ′ : P ` {Φ′}Σ′ {Ψ} ∧ σ′ |= Φ′ ∧ σ′ |= P ′.

6 Noninterference

We introduce a bisimulation-based, compositional noninterference property that accounts
for both the communications performed by a system and the modification of memory states.
We prove that this noninterference property is enforced by the information flow type system
presented in Section 5. Some auxiliary notations are first presented in Figure 2, where
Definition 3 and Definition 5 are used.

We extend our transition labels α with inaction ε and suspension �. We also introduce
action schemas β where the inputs come with holes rather than data. The idea is that the
data to be received is under the environment’s control. We write C

α
�η C

′ to represent that
there may be a transition from configuration C to configuration C ′ over processes in η.

Low-equivalence of configurations is defined with respect to particular policies P EP in
Figure 2. The main constraints are that P should be satisfied by the states of the two
configurations, and that the values of variables that are low under PS should be equal.

To be able to relate the communications performed in the two executions in our bisimulation-
based property, we introduce a notion of low equivalence (P

•

∼
ρ
) between actions α and

actions/action schemas γ. The relation P•∼
ρ

is the smallest one satisfying the rules in Figure 2.

10 Disjunctive Information Flow for Communicating Processes

Actions and action schemas:
α ::= c!~v | c?~v | τ | ε | �
β ::= c!~v | c?[] | τ | ε | �
γ ::= α | β

Decorated transitions:

C
α
�η C

′ , C
α−→η C

′ ∨
α = ε ∧ C′ = C ∨
(∀α′ : C α′−→η ⇒ P ◦(ch(α′)) = H) ∧ α = � ∧ C′ = C

Low equivalence of configurations:

〈Σ1;σ1〉
P=
P
〈Σ2;σ2〉 , P EP ∧ Pid(Σ1) = Pid(Σ2) = DP ∧ σ1 |= P ∧ σ2 |= P ∧ σ1

{P}= σ2

Low equivalence of actions and actions/action schemas (α P•∼
ρ
γ):

cρ′~v
P•∼
ρ
ε if P ◦(c) = H ∧ cρ′~v |=ρ P

•

cρ′~v1
P•∼
ρ
cρ′~v2 if P ◦(c) = L ∧ cρ′~v1 |=ρ P

• ∧ cρ′~v2 |=ρ P
• ∧ cρ′~v1

{P•}=
ρ
cρ′~v2

τ
P•∼
ρ
τ

τ
P•∼
ρ
�

Hole filling (β(~v′)):

c!~v(~v′) = c!~v c?[](~v′) = c?~v′ β(~v′) = β, if β ∈ {τ, ε,�}

Figure 2 Auxiliary definitions for noninterference

Concerning the “presence” of communication, α P•∼
ρ
γ requires that a communication with

confidential presence should correspond to inaction (ε), which implies among others the
absence of communication on the same channel2. It is worth pointing out that the ~v2 in the
same definition can be the unary vector []. Although Definition 3 has not been explicitly
extended to take care of holes, the bisimulation of Definition 9 will use α P•∼

ρ
γ in such a way

that the check [] ∈ P •V(c.1) can never be reached.

It is most ideal for a τ to correspond to (be simulated by) a τ . This is described by the
third line in the definition of α P•∼

ρ
γ. However, not all intuitively secure programs adhere to

this strict pattern. Consider degenerate policy environments P0 and Pch
0 such that P0(1) =

{(h : H, tt)}, P0(2) = {(h′ : H, tt)}, and Pch
0 = {(c : H; c′ : H, Z), (c.1 : H; c′.1 : H, Z)}.

The following system is intuitively secure; however, the τ action arising out of skip may
correspond to the confidential communication c!2, rather than another τ .

1 : if h > 1 then skip else c!2

Similarly, the following system is intuitively secure. However, the τ action produced by
synchronization may correspond to suspension of execution, since c′!2 cannot synchronize

2 This pattern is reminiscent of the “Weak bisimulation up to H” by Focardi and Rossi [13].

X. Li, F. Nielson, H. R.Nielson, and X. Feng 11

with any communication binder.

(1 : if h > 1 then c!2 else c′!2 || 2 : c?h′) \ {c, c′}

The two examples above thus illustrate the need for τ P•∼
ρ
�.

We are now in a position to define our noninterference property, termed communication-aware
security (CA-security). In Definition 8, − com∼

P
− is the union of all communication-aware

bisimulations (CA-bisimulations) that are in turn characterized in Definition 9.

I Definition 8 (CA-Security). Seccom(Σ,P) if and only if for all σ1, σ2, and P , if 〈Σ;σ1〉
P=
P

〈Σ;σ2〉, then (〈Σ;σ1〉, P) com∼
P

(〈Σ;σ2〉, P).

I Definition 9 (CA-Bisimulation).
A CA-bisimulation RP is a symmetric relation such that
(C1, P) RP (C2, P) implies C1

P=
P
C2 and the following:

∀α, η, C′1 s.t. C1
α−→η C

′
1 :

∃P •! , β : α
P•!∼
!
β ∧

∀P •? , ~v s.t. α
P•?∼
?
β(~v) :

∃C′2, P ′ : C2
β(~v)
�η C

′
2 ∧ (C′1, P ′)RP (C′2, P ′).

In words, a symmetric relation RP qualifies as a CA-bisimulation if for a pair (C1, P) and
(C2, P) related by RP , and a transition performing action α from C1, involving processes in
η, there exists a policy P •! and an action schema β low-equivalent to α concerning output,
and for all value vectors ~v and policies P •? such that β(~v) is low-equivalent to α concerning

input, there exists a simulation of α−→η by
β(~v)
� η from C2, and a policy P ′ whose pairings

with the configurations reached are still related under RP .

I Example 10. To aid the reader’s intuition, we provide a partial unfolding of a CA-
bisimulation for the system 2 : SD. Note that a proof of the CA-security of 2 : SD is not the
aim here. We represent by σv1v2v3v4 the local state [y 7→ v1][z 7→ v2][z1 7→ v3][z2 7→ v4], and
by PD the policy environmnet [2 7→ PMD(2)].

We have 〈2 : SD;σ2070〉
P 2

d=
PD
〈2 : SD;σ2080〉. Hence Seccom(2 : SD,PD) calls for (among other

things)
(〈2 : SD;σ2070〉, P 2

d) R? (〈2 : SD;σ2080〉, P 2
d),

where R? is a CA-bisimulation.

Suppose

〈2 : SD;σ2070〉
τ−→2 〈2 : c?(y, z); if ;wh;σ2070〉. (1)

There exist P •1 and τ , such that τ P•1∼
!
τ . Pick particular P •? = P •1 and ~v = (0, 0), for which

τ
P•1∼
?
τ(0, 0). Simulation of (1) is required with the action τ(0, 0) = τ . The only possibility is

〈2 : SD;σ2080〉
τ−→2 〈2 : c?(y, z); if ;wh;σ2080〉. And the following is required

(〈2 : c?(y, z); if ;wh;σ2070〉, P 2
d) R? (〈2 : c?(y, z); if ;wh;σ2080〉, P 2

d).

12 Disjunctive Information Flow for Communicating Processes

Suppose

〈2 : c?(y, z); if ;wh;σ2070〉
c?(1,k1)−→ 2 〈2 : if ;wh;σ1k170〉, (2)

where k1 is an integer. There should exist some P •! and β such that c?(1, k1) P
•
!∼
!
β. Since

P ◦(c) = L, β must be c?[]. Pick P •? = P •1 , and ~v, c?(1, k1) P
•
1∼
?
c?[](~v) implies v1 = 1 since

P •1 (c.1) = L. Hence a simulation of (2) with action c?[](1, k2) is required for all k2 ∈ Z
(note that P •1 (c.2) = H). It can only be of the form 〈2 : c?(y, z); if ;wh;σ2080〉

c?(1,k2)−→ 2
〈2 : if ;wh;σ1k280〉. And the following is required

(〈2 : if ;wh;σ1k170〉, P 1
d) R? (〈2 : if ;wh;σ1k280〉, P 1

d).

This further requires 〈2 : if ;wh;σ1k170〉
P 1

d=
PD
〈2 : if ;wh;σ1k280〉, which holds. Going through

two more “lock steps”, the following is required.

(〈2 : z1 := z;wh;σ1k170〉, P 1
d) R? (〈2 : z1 := z;wh;σ1k280〉, P 1

d) (3)
(〈2 : SD;σ1k1k10〉, P 1

d) R? (〈2 : SD;σ1k2k20〉, P 1
d) (4)

And we still have 〈2 : SD;σ1k1k10〉
P 1

d=
PD
〈2 : SD;σ1k2k20〉 as required by the last relation... J

In Example 10, the systems are always the same on both sides of R?, which is a special case
due partly to P ◦(c) = L in Pch

MD.

CA-security is compositional: it is preserved under \ and ||. In particular, its preservation
under parallel composition is enabled by the rely-guarantee [16] pattern in the treatment of
output and input, in CA-bisimulation.

I Theorem 11 (Compositionality). For Σ1 with policy environment P1, and Σ2 with policy
environment P2, such that Pid(Σ1) ∩ Pid(Σ2) = ∅,

1. Seccom(Σ1,P1) =⇒ ∀Ω ⊆ PCh : Seccom(Σ1 \ Ω,P1), and
2. Seccom(Σ1,P1) ∧ Seccom(Σ2,P2) =⇒ Seccom(Σ1||Σ2,P1] P2).

The most important result of this section, that well-typedness guarantees CA-security, is
formalized in Theorem 12. This soundness result means that our motivating example is
noninterfering (Example 13).

I Theorem 12 (Soundness). For all systems Σ with policy environments P, if P ` {TΣ}Σ{TΣ},
then Seccom(Σ,P).

I Example 13. Going back to the multiplexer example, by Theorem 12, the well-typedness
of the system ΣMD of Example 1 guarantees Seccom(ΣMD,PMD). J

7 Noninterference under Deterministic Schedulers

In this section, we formulate a noninterference property for systems executing under the
control of deterministic schedulers. We then show that CA-security implies security under
every such scheduler whose behavior is only influenced by its observation of the public memory
(and its internal state).

X. Li, F. Nielson, H. R.Nielson, and X. Feng 13

Table 3 Transition rules for systems under scheduling

〈Σ;σ〉 α−→η 〈Σ′;σ′〉

〈Σ;σ; q〉 α−→η 〈Σ′;σ′; δ(q, σ)〉
if o(q, σ) = {η}

¬(∃α : 〈Σ;σ〉 α−→η)

〈Σ;σ; q〉 �−→η 〈Σ;σ; δ(q, σ)〉
if o(q, σ) = {η}

We formalize deterministic schedulers ∆ for systems Σ as Mealy automata (Q, q0,StΣ, 2Pid , δ, o)
where Q is its set of states, q0 the initial state, StΣ (the memory states of Σ) is the alphabet,
2Pid is the alphabet used for output, δ : Q × StΣ → Q is the transition function and
o : Q× StΣ → 2Pid is the output function. For each state q and memory σ, o(q, σ) is a set
of one or two process identifiers, signaling the process(es) scheduled for the next step.

The semantics at the system level is adapted to execute the process(es) picked by the
scheduler, the transition rules are given in Table 3. The extended configurations Ĉ = 〈Σ;σ; q〉
now contain the current state q of the scheduler.

It is desirable to constrain the observational power of the scheduler to the parts of the states
that are low with respect to all policies. This is achieved with the concept of H-obliviousness
(e.g., [29]).

I Definition 14 (H-Oblivious Schedulers). For ∆ = (Q, q0,StΣ, 2Pid , δ, o), we have OblP(∆)
if q0

∆
≈
P
q0 holds, where ∆

≈
P

is the largest relation s.t. q1
∆
≈
P
q2 implies

∀σ1, σ2 : σ1
{P |P EP}= σ2 ⇒ o(q1, σ1) = o(q2, σ2) ∧ δ(q1, σ1)

∆
≈
P
δ(q2, σ2).

It is not difficult to come up with sensible H-oblivious schedulers (simple examples can be
ones whose decisions do not depend on the memory at all) for the system ΣMD considered in
our motivating example.

In the following definition, we extend the notion of “low equivalence” (P=
P
) introduced in

the last section to a relation P,∆=
P

on our new type of configurations. In fact, an alternative

interpretation of this new relation is P,∆=
P

= P=
P
×

∆
≈
P
.

I Definition 15 (Low Equivalence of Extended Configurations).
〈Σ1;σ1; q1〉

P,∆=
P
〈Σ2;σ2; q2〉 if and only if 〈Σ1;σ1〉

P=
P
〈Σ2;σ2〉 and q1

∆
≈
P
q2.

We are in a position to state the security criterion for scheduled systems. In Definition 16,
− ∆∼
P
− is the union of all bisimulations on scheduled systems characterized in Definition 17,

where we omit all transition labels by abbreviating Ĉ α−→η Ĉ
′ as Ĉ −→ Ĉ ′.

I Definition 16 (Security of Scheduled Systems). A system Σ is secure under the scheduling
of ∆, denoted Sec∆(Σ,P), if and only if for all σ1, σ2, and P , if 〈Σ;σ1; q0〉

P=
P
〈Σ;σ2; q0〉, then

(〈Σ;σ1; q0〉, P) ∆∼
P

(〈Σ;σ2; q0〉, P).

I Definition 17 (Bisimulation for Scheduled Systems). A bisimulation R∆
P for scheduled

systems is a symmetric relation such that (Ĉ1, P) R∆
P (Ĉ2, P) implies Ĉ1

P=
P,∆

Ĉ2 and the
following:

∀Ĉ′1 s.t. Ĉ1 −→ Ĉ′1 : ∃Ĉ′2 : Ĉ2 −→ Ĉ′2 ∧ ∃P ′ : (Ĉ′1, P ′)R∆
P (Ĉ′2, P ′).

14 Disjunctive Information Flow for Communicating Processes

Our final result (Theorem 19) is that the CA-security of a system guarantees its security
under the control of any H-oblivious scheduler. However, the bisimulation for scheduled
systems defined above dispensed with reliance upon certain channel policies for an input
to be simulated; hence we need to impose the following condition of input completeness on
the set Pch of channel policies for the link between the two noninterference conditions to be
finally established.

I Definition 18 (Input Completeness). Pch is input complete for Σ, denoted IC(Pch,Σ), if
∀σ,Σ′, σ′, c, ~v : 〈Σ;σ〉 →∗ 〈Σ′;σ′〉 c?~v−→ ⇒ ∃P • ∈ Pch : c?~v |=? P

•.

I Theorem 19. For all systems Σ, policy environments P for variables, and schedulers ∆,
if Seccom(Σ,P), IC (Pch,Σ) and OblP(∆), then Sec∆(Σ,P).

The input completeness condition essentially requires that each input (from the environment)
that can be performed by a system Σ is satisfied by some content policy in Pch. Note that
this condition is met by all systems that can only communicate internally (with τ -actions),
such as the ΣMD of our motivating example. Hence continuing with Example 13, we can
finally conclude Sec∆(ΣMD,PMD) for all schedulers ∆ such that OblPMD(∆) holds.

8 Conclusion and Discussion

This paper studies information flow problems with the use of content-dependent confid-
entiality policies in a concurrent language. In our language, processes use local variables
and communicate along channels with each other and the environment. A bisimulation-
based noninterference condition is formulated to characterize security under the selection
of different confidentiality policies according to the current memory and communication
content. “Presence” and “content” are treated as separate aspects of communication, and
a “rely-guarantee” pattern in picking the policies relevant to output and input leads to a
compositionality result. A link is then established from this property to a more concisely
formulated property concerning the use of a deterministic scheduler. The enforcement is
achieved by a static type system that employs a Hoare logic component, which provides
information on the possible memory content at different program points.

A major scenario related to our development is a concurrent system in which the destination
of messages depends on their tagging. This is illustrated by our running example involving a
communicating pair of multiplexer and demultiplexer, that separates confidential and public
traffic between system partitions. This example is shown to be well-typed and secure under
the control of schedulers whose behaviors are only influenced by their observation of the
public memory.

The CA-bisimulation formulated in Section 6 does not universally quantify over states,
but rather carries the states along with the executions. This has the flavor of the “flat
bisimulation” considered in [9] that further goes back to [4]. “Flat bisimulations” do not
give rise to a compositional notion of security when shared-memory is used, since memory
modifications by other concurrent processes are not captured. However, the use of local
variables with communication rectifies this issue and makes our CA-security compositional.
Not surprisingly, this compositionality result allows us to focus on systems with single
processes in our soundness proof.

X. Li, F. Nielson, H. R.Nielson, and X. Feng 15

As mentioned in the introduction, several developments [1, 5, 20] where information flow
policies depend on certain conditions exist for sequential languages. On the other hand, type/-
proof systems and noninterference properties have been studied extensively for concurrent
systems (e.g., [4, 21, 9]), using information flow policies from simple security lattices.

For concurrent program security, the scheduling problem is an important area of research in
its own (e.g., [29, 22, 26]). We have considered simple deterministic schedulers modeled neatly
as Mealy automata. Understanding the security implications of probabilistic schedulers [26]
with the use of disjunctive policies is an interesting line of future work. Another relevant
topic of future work is dealing with asynchronous communication, which is important for
widely distributed systems.

16 Disjunctive Information Flow for Communicating Processes

References

1 Torben Amtoft, Josiah Dodds, Zhi Zhang, Andrew W. Appel, Lennart Beringer, John
Hatcliff, Xinming Ou, and Andrew Cousino. A certificate infrastructure for machine-
checked proofs of conditional information flow. In POST ’12.

2 Krzysztof R. Apt. Ten years of Hoare’s logic: A survey - part 1. ACM Trans. Program.
Lang. Syst., 3(4):431–483, 1981.

3 Frédéric Besson, Nataliia Bielova, and Thomas Jensen. Hybrid information flow monitoring
against web tracking. In CSF ’13.

4 Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs and thread
systems. Theoretical Computer Science, 281(1):109–130, 2002.

5 Niklas Broberg and David Sands. Paralocks: role-based information flow control and bey-
ond. In POPL ’10, pages 431–444.

6 Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a secure
voting system. In S&P ’08, pages 354–368.

7 Ellis S. Cohen. Information transmission in computational systems. In SOSP ’77.
8 The Coq Proof Assistant. Webpage: http://coq.inria.fr.
9 Mads Dam. Decidability and proof systems for language-based noninterference relations.

POPL ’06.
10 Dorothy E. Denning and Peter J. Denning. Certification of programs for secure information

flow. Commun. ACM, 20(7):504–513, 1977.
11 Sebastian Eggert, Ron van der Meyden, Henning Schnoor, and Thomas Wilke. The com-

plexity of intransitive noninterference. In 32nd IEEE Symposium on Security and Privacy,
S&P 2011, 22-25 May 2011, Berkeley, California, USA, pages 196–211, 2011.

12 Jeffrey S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143–147, 1974.
13 Riccardo Focardi and Sabina Rossi. Information flow security in dynamic contexts. Journal

of Computer Security, 14(1):65–110, 2006.
14 Daniel Hedin, Arnar Birgisson, Luciano Bello, and Andrei Sabelfeld. Jsflow: tracking

information flow in javascript and its apis. In SAC ’14, pages 1663–1671.
15 Daniel Hedin and Andrei Sabelfeld. A perspective on information-flow control. In Software

Safety and Security - Tools for Analysis and Verification, pages 319–347. 2012.
16 C. B. Jones. Development Methods for Computer Programs including a Notion of Interfer-

ence. PhD thesis, Oxford University, June 1981.
17 Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis tool for

detecting web application vulnerabilities. pages 6–pp, 2006.
18 Naoki Kobayashi. Type-based information flow analysis for the pi-calculus. Acta Inf.,

42(4-5):291–347, 2005.
19 Ximeng Li. Proofs that are formalized in coq.

http://lbtweb.pbworks.com/w/file/fetch/97133580/dif_com_coq.zip.
20 Luísa Lourenço and Luís Caires. Dependent information flow types. POPL ’15.
21 Heiko Mantel and Andrei Sabelfeld. A unifying approach to the security of distributed and

multi-threaded programs. Journal of Computer Security, 11(4):615–676, 2003.
22 Heiko Mantel and Henning Sudbrock. Flexible scheduler-independent security. In ESORICS

’10, pages 116–133.
23 Robin Milner. Communication and concurrency, volume 84. Prentice hall, 1989.
24 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
25 John Rushby. Separation and integration in mils (the mils constitution). Computer Science

Laboratory SRI International, Technical Report SRI-CSL-08-XX, 2008.
26 Andrei Sabelfeld. Confidentiality for multithreaded programs via bisimulation. In PSI ’03.

X. Li, F. Nielson, H. R.Nielson, and X. Feng 17

27 Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security. Selected
Areas in Communications, IEEE Journal on, 21(1):5–19, 2003.

28 Geoffrey Smith. Improved typings for probabilistic noninterference in a multi-threaded
language. Journal of Computer Security, 14(6):591–623, 2006.

29 Ron van der Meyden and Chenyi Zhang. Information flow in systems with schedulers, part
I: definitions. Theor. Comput. Sci., 467:68–88, 2013.

30 Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system for secure
flow analysis. Journal of Computer Security, 4(2/3):167–188, 1996.

18 Disjunctive Information Flow for Communicating Processes

A Proof Sketch

Subject Reduction

The subject reduction result (Theorem 7) can be shown using the process-local result of
Lemma 20, which can be proved by a straightforward induction on the derivation of the
typing of S.

I Lemma 20. If X, l1 `K {φ} S {ψ} : Y, l2 holds, `i 〈S;σ〉 α−→ 〈S′;σ′〉, σ |= φ, P ∈ K and
σ |= P , then
1. ∃P • : α |=! P

•, and
2. if ∃P • s.t. α |=? P

• then ∃P ′ ∈ K, φ′ : X, l1 `K {φ′} S′ {ψ} : Y, l2 and σ′ |= φ′ and σ′ |= P ′.

Compositionality

I Lemma 21. For all Σ1, Σ2, σ1, σ2, i, and j, such that i ∈ Pid(Σ1) and j ∈ Pid(Σ2),

if there do not exist c, ρ and ~v such that 〈Σ1;σ1〉
cρ~v−→i and 〈Σ2;σ2〉

cρ̃~v−→j, then we have

〈Σ1||Σ2;σ1] σ2〉
�
�i,j 〈Σ1||Σ2;σ1] σ2〉.

I Lemma 22. For all Σ, σ, Σ′1, σ′1, Σ′2, σ′2, c1, ρ1, ~v1, c2, ρ2, ~v2, and i, if 〈Σ;σ〉 c1ρ1~v1−→ i

〈Σ′1;σ′1〉, then
1. 〈Σ;σ〉 c2ρ2~v2−→ i 〈Σ′2;σ′2〉 ⇒ c1 = c2 ∧ ρ1 = ρ2, and
2. 〈Σ;σ〉 6 τ−→i.

I Lemma 23. The following statements hold.

1. If cρ′~v P
•

∼
ρ
ε then cρ̃′~v P

•

∼
ρ̃

ε, and

2. if cρ′~v1
P•∼
ρ
cρ′~v2 then cρ̃′~v1

P•∼
ρ̃

cρ̃′~v2.

The proof of the compositionality result (Theorem 11) is sketched below.

Proof of Theorem 11.

Security of Σ1 \ Ω

We construct the following relation R\.

R\ = {((〈Σa \ Ω; σa〉, Pa), (〈Σb \ Ω; σb〉, Pb)) | (〈Σa;σa〉, Pa) com∼
P1

(〈Σb;σb〉, Pb)}

By Seccom(Σ1,P1), we have

∀σ1, σ2, P s.t. 〈Σ1;σ1〉
P=
P1
〈Σ1;σ2〉 : (〈Σ1;σ1〉, P) com∼

P1
(〈Σ1;σ2〉, P).

Take arbitrary σ′1, σ′2 and P ′ such that 〈Σ1 \ Ω; σ′1〉
P ′=
P1
〈Σ1 \ Ω; σ′2〉. We also have 〈Σ1; σ′1〉

P ′=
P1

〈Σ1; σ′2〉. Hence (〈Σ1;σ′1〉, P ′)
com∼
P1

(〈Σ1;σ′2〉, P ′) holds, and (〈Σ1 \ Ω;σ′1〉, P ′) R\ (〈Σ1 \
Ω;σ′2〉, P ′) holds.

X. Li, F. Nielson, H. R.Nielson, and X. Feng 19

It remains to be shown that R\ is a CA-bisimulation. The symmetry of R\ is obvious by its
construction.

Take arbitrary pair ((〈Σa \ Ω; σa〉, Pa), (〈Σb \ Ω; σb〉, Pb)) from R\, and arbitrary α, η, and
C ′1 such that 〈Σa \ Ω;σa〉

α−→η C
′
1. There must exist some C ′′1 such that 〈Σa;σa〉

α−→η C
′′
1

and the channel used by α, if any, is not in C. The rest of the reasoning goes by a case split
on α, on which we do not elaborate any further.

Security of Σ1||Σ2

We construct the following relation R||.

R|| = { ((〈Σ11||Σ12;σ11] σ12〉, P1] P2), (〈Σ21||Σ22;σ21] σ22〉, P1] P2)) |
(〈Σ11;σ11〉, P1) com∼

P1
(〈Σ21;σ21〉, P1) ∧ (〈Σ12;σ12〉, P2) com∼

P2
(〈Σ22;σ22〉, P2) }

By Seccom(Σ1,P1) and Seccom(Σ2,P2), for all P , σa and σb such that 〈Σ1||Σ2;σa〉
P=
P

〈Σ1||Σ2;σb〉, (〈Σ1||Σ2;σa〉, P) R|| (〈Σ1||Σ2;σb〉, P) holds.

We then show that R|| is a CA-bisimulation. By construction R|| is symmetric.

Take a pair ((〈Σ11||Σ12;σ11] σ12〉, P1]P2), (〈Σ21||Σ22;σ21] σ22〉, P1]P2)) from R|| (where
we have directly exposed the structures of the systems, states, and policies). We have

(〈Σ11;σ11〉, P1) com∼
P1

(〈Σ21;σ21〉, P1) (5)

(〈Σ12;σ12〉, P2) com∼
P2

(〈Σ22;σ22〉, P2) (6)

Suppose 〈Σ11||Σ12;σ11] σ12〉
α−→η 〈Σ′11||Σ′12;σ′11] σ′12〉 for some α, Σ′11, Σ′12, σ′11 and

σ′12. A case split on this transition is to be made, where the most interesting case is the
communication between Σ11 and Σ12. We give detailed arguments for this case.

Suppose without loss of generality that 〈Σ11;σ11〉
c!~v−→i 〈Σ′11;σ′11〉, 〈Σ12;σ12〉

c?~v−→j 〈Σ′12;σ′12〉,
and η = i, j. We then discuss whether P ◦(c) is H or L.

1. P ◦(c) = H. We make a further case split on whether Σ21 can communicate with Σ22.
a. Σ21 cannot communicate with Σ22. Using Lemma 21, we have

〈Σ21||Σ22;σ21] σ22〉
�
�i,j 〈Σ21||Σ22;σ21] σ22〉 (7)

Using (5), there exists some content policy P •0 and β such that c!~v P
•
0∼
!
β. By P ◦(c) = H,

β = ε. For all content policy P •? and ~v such that c!~v P•?∼
?
ε(~v) (which boilds down

to ∀P •? ∈ Pch
•), there exists some variable policy P ′1 such that the transition from

〈Σ11;σ11〉 is simulated by an ε-transition from 〈Σ21;σ21〉, with

(〈Σ′11;σ′11〉, P ′1) com∼
P1

(〈Σ21;σ21〉, P ′1). (8)

Using (6), and the fact that c?~v P
•
0∼
?
ε holds with the P •0 guaranteed by the output c!~v

(using Lemma 23), there exists some variable policy P ′2 such that

(〈Σ′12;σ′12〉, P ′2) com∼
P2

(〈Σ22;σ22〉, P ′2). (9)

20 Disjunctive Information Flow for Communicating Processes

By the construction of R||, we thus have

(〈Σ′11||Σ′12;σ′11] σ′12〉, P ′1] P ′2) R|| (〈Σ21||Σ22;σ21] σ22〉, P ′1] P ′2).

Since τ P•0∼
!
� holds, the internal communication τ between Σ11 and Σ12 is thus

simulated by transition (7).
b. Suppose we have c′, ~v′, Σ′21, Σ′22, σ′21 and σ′22 such that

〈Σ21;σ21〉
c′!~v′−→i 〈Σ′21;σ′21〉 (10)

〈Σ22;σ22〉
c′?~v′−→j 〈Σ′22;σ′22〉 (11)

We show that P ◦(c′) = H must be the case. Assume per absurdum that P ◦(c′) = L.
By (5), the symmetry of com∼

P1
, and transition (10), there exists P •1 and β such that

c′!~v′ P
•
1∼
!
β, and for all P •? such that c′!~v′ P

•
?∼
?
β (which boils down to ∀P •? ∈ Pch

•), we

have 〈Σ11;σ11〉
β
�i 〈Σ′11;σ′11〉. By P ◦(c′) = L, β = c′!~v′′ for some ~v′′. Hence we have

〈Σ11;σ11〉
c′!~v′′−→i 〈Σ′11;σ′11〉 by the non-emptiness of Pch

• . By Lemma 22 we have c′ = c

and a contradiction.
By reasoning similar to that of case (1a), it can be shown that c!~v and c?~v performed
from 〈Σ11;σ11〉 and 〈Σ12;σ12〉 can both be simulated by ε, resulting again in (8) and
(9). By the symmetry of com∼

P1
and com∼

P2
, and P ◦(c′) = H, the actions c′!~v′ and c′?~v′ can

be simulated by ε-transitions from 〈Σ′11;σ′11〉 and 〈Σ′12;σ′12〉, resulting in

(〈Σ′11;σ′11〉, P ′′1) com∼
P1

(〈Σ′21;σ′21〉, P ′′1) (12)

(〈Σ′12;σ′12〉, P ′′2) com∼
P2

(〈Σ′22;σ′22〉, P ′′2) (13)

for some P ′′1 and P ′′2 . By the construction of R||, we have

(〈Σ′11||Σ′12;σ′11] σ′12〉, P ′′1] P ′′2) R|| (〈Σ′21||Σ′22;σ′21] σ′22〉, P ′′1] P ′′2).

There must exist P •! and τ such that τ P•!∼
!
τ (any P • in Pch

• will do), and for all

P •? and ~v such that τ P•?∼
?
τ(~v), there exists the transition 〈Σ21||Σ22;σ21] σ22〉

τ−→i,j

〈Σ′21||Σ′22;σ′21] σ′22〉 simulating the internal communication between Σ11 and Σ21.
The case where 〈Σ21;σ21〉 performs an input c′?~v′ and 〈Σ22;σ22〉 performs the corres-
ponding output c′!~v′ is analogous.

2. P ◦(c) = L. In this case the output and input by Σ11 and Σ12, respectively, can be
simulated by an output and an input over the same channel, from Σ21 and Σ22. The
communication between Σ11 and Σ12 can be simulated by a communication between Σ21
and Σ22 over the same channel c. The statement 2 of Lemma 23 will be useful.

The other cases are less involved. J

Soundness

The proof of the soundness result (Theorem 12) is sketched below. The establishment of
the compositionality result enables us to focus on systems of single processes.

X. Li, F. Nielson, H. R.Nielson, and X. Feng 21

Table 4 The low equivalence relation

(LOEQ)
∃φ : loKφ (〈S;σ1〉, P) ∧ loKφ (〈S;σ2〉, P) σ1

{P}= σ2 nip(K)

(〈i : S; σ1〉, P)
[i 7→K]
' (〈i : S; σ2〉, P)

(HIEQ)
hiKφ1(〈S1;σ1〉, P) ∧ hiKφ2(〈S2;σ2〉, P) σ1

{P}= σ2 nip(K)

(〈i : S1; σ1〉, P)
[i 7→K]
' (〈i : S2; σ2〉, P)

I Definition 24. A process S with set K of variable policies is high at state σ and with policy
P , under pre-condition φ, written hiKφ (〈S;σ〉, P), if and only if

σ |= P ∧ σ |= φ ∧
∃X, l,X ′, l′, ψ : σ |= φ ∧ X, l `K {φ}S {ψ} : X ′, l′ ∧ (l = H ∨ ∃x ∈ X : PS(x) = H)

I Definition 25. A process S with set K of variable policies is low at state σ and with policy
P , under pre-condition φ, written loKφ (〈S;σ〉, P), if and only if

σ |= P ∧ σ |= φ ∧
(∃X, l,X ′, l′, ψ : X, l `K {φ}S {ψ} : X ′, l′) ∧
(∀X, l,X ′, l′, ψ : X, l `K {φ}S {ψ} : X ′, l′ ⇒ (l = L ∧ ∀x ∈ X : PS(x) = L))

We then define a low-equivalence relation
[i7→K]
' concerned with systems of the form i : S in

Table 4.

Several lemmas are then established to build up to the following results:

[i 7→K]
' qualifies as a CA-bisimulation, and

if [i 7→ K] ` {[i 7→ tt]} i : S {[i 7→ tt]} holds, and 〈i : S;σ1〉
P=

[i 7→K]
〈i : S;σ2〉, then (〈i :

S; σ1〉, P)
[i7→K]
' (〈i : S; σ2〉, P) holds.

In other words, if [i 7→ K] ` {[i 7→ tt]} i : S {[i 7→ tt]} can be established, then Seccom(i :
S, [i 7→ K]). Suppose a sysmtem Σ? has the forms Σ1||Σ2, or Σ\Ω, and the policy environment
P?. By the typing rule for systems, and the compositionality theorem (Theorem 11), we can
then easily show that P? ` {TΣ?}Σ? {TΣ?} implies Seccom(Σ?,P?).

I Lemma 26. For all S, σ1, σ2, i, K and P ∈ K, if [i 7→ K] ` {[i 7→ φ]} [i 7→ S] {Ψ} for
some φ and Ψ, σ1 |= P , σ2 |= P , σ1 |= φ, and σ2 |= φ, then either of the following holds.

loKφ (〈S;σ1〉, P) ∧ loKφ (〈S;σ2〉, P)

hiKφ (〈S;σ1〉, P) ∧ hiKφ (〈S;σ2〉, P)

I Definition 27. UpdNext(S) represents the set of variables that the process S attempts to
update immediately. Formally, UpdNext(S) = ∅ except for the following cases.

UpdNext(x := a) = {x}
UpdNext(c?~x) = {x1, ..., xk} where ~x = (x1, ..., xk)
UpdNext(S1;S2) = UpdNext(S1)

I Lemma 28. If x 6∈ UpdNext(S), and `i 〈S;σ〉 α−→ 〈S′;σ′〉, then σ(x) = σ′(x).

22 Disjunctive Information Flow for Communicating Processes

I Lemma 29. If hiKφ (〈S;σ〉, P), and `i 〈S;σ〉 α−→ 〈S′;σ′〉, then

∀c, ρ, ~v : α = cρ~v ⇒ P ◦(c) = H,

∃α |=! P
•, and

if ∃α |=? P
•, then

∃P ′ : (∀x ∈ VarΣ,i : (x ∈ UpdNext(S)⇒ P ′S(x) = H) ∧ (x 6∈ UpdNext(S)⇒ PS(x) v P ′S(x))) ∧
∃ψ : hiKψ (〈S′;σ′〉, P ′).

I Lemma 30. Given S = S1;S2, σ, P , and φ such that S is typable with precondition φ,
σ |= φ, and σ |= PV, if one of the following holds

S1 = c!~a, where P ◦(c) = H,

S1 = c?~x, where P ◦(c) = H,

S1 = if b then S′ else S′′, where ∃x ∈ fv(b) : PS(x) = H, or

S1 = while b doS′, where ∃x ∈ fv(b) : PS(x) = H,

then hiKφ (〈S;σ〉, P) holds.

I Lemma 31. For all S, if S contains a communication binder over channel c, then for all
K, X, l, X ′, l′, φ, and ψ, such that X, l `K {φ} S {ψ} : X ′, l′, it holds that P ◦(c) v l′.

Scheduler-Specific Security

We turn to the proof that CA-security implies security under deterministic scheduling.

I Lemma 32. For all Σ1, σ1, Σ′1, σ′1, Σ2, σ2, α′, Σ′2, σ′2, η and P , if we have (〈Σ1;σ1〉, P) com∼
P

(〈Σ2;σ2〉, P), 〈Σ1;σ1〉
�
�η 〈Σ′1;σ′1〉, and 〈Σ2;σ2〉

α′−→η 〈Σ′2;σ′2〉, then α′ = τ or P ◦(ch(α′)) =
H.

Proof. This lemma can be shown using Lemma 22 and the symmetry of − com∼
P
−. Note that

all possible cases for α′ are α′ = τ , P ◦(ch(α′)) = H and P ◦(ch(α′)) = L. Hence we just need
to show that P ◦(ch(α′)) = L is impossible. Assume per absurdum that P ◦(ch(α′)) = L. By
symmetry of − com∼

P
− we have

(〈Σ2;σ2〉, P) com∼
P

(〈Σ1;σ1〉, P).

By 〈Σ2;σ2〉
α′−→η 〈Σ′2;σ′2〉, there exist P •! , β′ such that α′ P

•
!∼
!
β′, and for all P •? , ~v′ such that

α′
P•?∼
?
β′(~v′), there exist Σ′1, σ′1, and P ′ such that

〈Σ1;σ1〉
β′(~v′)
� η 〈Σ′1;σ′1〉 (14)

(〈Σ′2;σ′2〉, P ′)
com∼
P

(〈Σ′1;σ′1〉, P ′) (15)

Since P ◦(ch(α′)) = L, by α′ P
•
!∼
!
β′ we have the following cases:

1. α′ = c!~v and β′ = c!~v′′ for some c, ~v and ~v′′ such that vj = v′′j whenever P •(c.j) = L,
2. α′ = c?~v and β′ = c?[] for some c and ~v.

X. Li, F. Nielson, H. R.Nielson, and X. Feng 23

In both cases, the universally quantified P •? and ~v′ can be instantiated with P •! and ~v, for
α′

P•?∼
?
β′(~v′) to be satisfied. We thus obtain (14) un-guarded. In more detail, we have

〈Σ1;σ1〉
β′(~v)−→η 〈Σ′1;σ′1〉 (16)

However, we also have 〈Σ1;σ1〉
�
�η 〈Σ′1;σ′1〉 from the pre-conditions. This is impossible due

to Lemma 22, and this contradiction completes the proof. J

I Lemma 33. If IC (Pch,Σ), ∃σ : 〈Σ;σ〉 −→∗ 〈Σ1;σ1〉
α−→, P ◦(ch(α)) = H, and α P•!∼

!
β,

then ∃P •? : ∀~v : α P•?∼
?
β(~v).

Proof. The proof is trivial by making a case split on the polarity of α. J

Finally, the proof of Theorem 19 is given below.

Proof. We unfold Seccom(Σ,P) into

∀σ1, σ2, P s.t. 〈Σ;σ1〉
P=
P
〈Σ;σ2〉 : (〈Σ;σ1〉, P) com∼

P
(〈Σ;σ2〉, P) (17)

Given ∆ such that OblP(∆) holds, we construct the following relation R∆,
R∆ = {((〈Σ1;σ1; q1〉, P1), (〈Σ2;σ2; q2〉, P2)) |

q1
∆
≈
P
q2 ∧

(〈Σ1;σ1〉, P1) com∼
P

(〈Σ2;σ2〉, P2) ∧
∃σ : 〈Σ;σ〉 −→∗ 〈Σ1;σ1〉 ∧ ∃σ : 〈Σ;σ〉 −→∗ 〈Σ2;σ2〉}.

Using (17), it is not difficult to show that for all σ1, σ2, and P such that 〈Σ;σ1; q0〉
P=
P

〈Σ;σ2; q0〉, the pair ((〈Σ;σ1; q0〉, P), (〈Σ;σ2; q0〉, P)) is in R∆.

We next show that R∆ is a bisimulation for scheduled systems. The symmetry of R∆ is
obvious by construction.

Take pair ((〈Σ1;σ1; q1〉, P), (〈Σ2;σ2; q2〉, P)) from R∆. We have

q1
∆
≈
P
q2 (18)

(〈Σ1;σ1〉, P) com∼
P

(〈Σ2;σ2〉, P) (19)

∃σ : 〈Σ;σ〉 −→∗ 〈Σ1;σ1〉 (20)
∃σ : 〈Σ;σ〉 −→∗ 〈Σ2;σ2〉 (21)

We thus have 〈Σ1;σ1〉
P=
P
〈Σ2;σ2〉. Hence 〈Σ1;σ1; q1〉

P,∆=
P
〈Σ2;σ2; q2〉 holds.

Take arbitrary Σ′1, σ′1 and q′1 such that

〈Σ1;σ1; q1〉 −→ 〈Σ′1;σ′1; q′1〉. (22)

By (19), we have σ1
{P}= σ2, and P EP, thus σ1

{P ′|P ′ EP}= σ2. By OblP(∆), we have

o(q2, σ2) = o(q1, σ1), (23)

24 Disjunctive Information Flow for Communicating Processes

and

q′1
∆
≈
P
q′2, (24)

where q′2 = δ(q2, σ2) (and we know that q′1 = δ(q1, σ1)).

With a case split on whether transition (22) is a �−→, we show that there is always a one-step
simulation.

1. Transition (22) is 〈Σ1;σ1; q1〉
α−→η 〈Σ′1;σ′1; q′1〉 where α 6= �. We have

〈Σ1;σ1〉
α−→η 〈Σ′1;σ′1〉 (25)

By (19), there exist some P •! and β such that α P•!∼
!
β, and for all P •? , ~v such that α P•?∼

?
β(~v),

there exist Σ′2, σ′2, and P ′ such that

〈Σ2;σ2〉
β(~v)
� η 〈Σ′2;σ′2〉 (26)

(〈Σ′1;σ′1〉, P ′)
com∼
P

(〈Σ′2;σ′2〉, P ′) (27)

a. Suppose α is not an input. Then all P •? in Pch
• , and all ~v will satisfy α P•?∼

?
β(~v).

b. Suppose α = c?~v1 and P ◦(c) = H. By α P•!∼
!
β, β must be ε. By IC (Pch,Σ) and (20),

there exists some P •2 in Pch such that for all ~v2, α
P•2∼
?
ε(~v2).

c. Suppose α = c?~v1 and P ◦(c) = L. By α P•!∼
!
β, β = c?[]. By IC (Pch,Σ) and (20), there

exists some P •2 , and ~v2 = ~v1, such that α P•2∼
?
c?[](~v2).

Hence in all cases we can instantiate the universally quantified P •? and ~v, and obtain the
transition (26) such that (27) holds. We next make a case split on whether β = ε.
a. β 6= ε.

i. β 6= �. We have 〈Σ2;σ2; q2〉 −→η 〈Σ′2;σ′2; q′2〉. Combining q′1
∆
≈
P
q′2 and (27), we

have
(〈Σ′1;σ′1; q′1〉, P ′) R∆ (〈Σ′2;σ′2; q′2〉, P ′).

ii. β = �. We have 〈Σ2;σ2〉
�
�η 〈Σ′2;σ′2〉. We know that (∀α′ : 〈Σ2;σ2〉

α′−→η ⇒
P ◦(ch(α′)) = H) ∧ Σ′2 = Σ2 ∧ σ′2 = σ2. There are two possibilities concerning the
transition that can take place from 〈Σ2;σ2〉.
Suppose no transition can be performed from 〈Σ2;σ2〉. In this case we have
〈Σ2;σ2; q2〉

�−→η 〈Σ2;σ′2; q′2〉. This transition qualifies as simulation of the transition
〈Σ1;σ1; q1〉

α−→η 〈Σ′1;σ′1; q′1〉 in R∆, by reasoning similar to the case 1(a)i.
Suppose a transition 〈Σ2;σ2〉

α′−→η 〈Σ′′2 ;σ′′2 〉 exists for some Σ′′2 , σ′′2 and α′, where
α′ is a communication such that P ◦(ch(α′)) = H. By the symmetry of − com∼

P
−,

(27), Σ′2 = Σ2 and σ′2 = σ2, we have

(〈Σ2;σ2〉, P ′)
com∼
P

(〈Σ′1;σ′1〉, P ′). (28)

Hence there exist β′, P •!2 such that α′ P
•
!2∼
!
β′, and for all ~v′ and P •?2 such that

X. Li, F. Nielson, H. R.Nielson, and X. Feng 25

α′
P•?2∼
?
β′(~v′), there exist Σ′′1 , σ′′1 , and P ′′, such that

〈Σ′1;σ′1〉
β′(~v′)
� η 〈Σ′′1 ;σ′′1 〉 (29)

(〈Σ′′2 ;σ′′2 〉, P ′′)
com∼
P

(〈Σ′′1 ;σ′′1 〉, P ′′) (30)

By Lemma 33, IC (Pch,Σ), and (21), there exists a content policy instantiating P •?2

such that for any value vector of the appropriate length instantiating ~v′, α′ P
•
?2∼
?
β′(~v′)

holds.
We thus obtain (29) and (30) no matter which is the case for α′. By (29) and β′ = ε,
we have Σ′′1 = Σ′1 and σ′′1 = σ′1. By the symmetry of − com∼

P
−, we have

(〈Σ′1;σ′1〉, P ′′)
com∼
P

(〈Σ′′2 ;σ′′2 〉, P ′′). (31)

Building on the transition 〈Σ2;σ2〉
α′−→η 〈Σ′′2 ;σ′′2 〉 and using (23), we have

〈Σ2;σ2; q2〉
α′−→η 〈Σ′′2 ;σ′′2 ; q′2〉.

It is not difficult to see that the transition above qualifies as a simulation of
transition (22) in R∆, since the pair ((〈Σ′1;σ′1; q′1〉, P ′′), (〈Σ′′2 ;σ′′2 ; q′2〉, P ′′)) is in R∆
(which can be deduced using (24) and (31)).

b. β = ε.

i. Suppose ¬(∃α′ : 〈Σ2;σ2〉
α′−→η). Then it is not difficult to see that 〈Σ2;σ2; q2〉

�−→η

〈Σ2;σ2; q′2〉 qualifies as a simulation of transition (22).
ii. Suppose there exists the transition

〈Σ2;σ2〉
α′−→η 〈Σ′′2 ;σ′′2 〉, (32)

for some α′, Σ′′2 and σ′′2 . We know from α
P•!∼
!
ε that α is a communication such that

P ◦(ch(α)) = H. By Lemma 22, we have ∀α′′ : 〈Σ1;σ1〉
α′′−→η ⇒ P ◦(ch(α′′)) = H.

Therefore we have 〈Σ1;σ1〉
�
�η 〈Σ1;σ1〉. By Lemma 32, α′ = τ or P ◦(ch(α′)) = H.

Suppose P ◦(ch(α′)) = H. The proof is similar to the case 1(a)ii, where there is a
high communication from 〈Σ2;σ2〉.
Suppose α′ = τ . By symmetry of − com∼

P
−, and (19), we have

(〈Σ2;σ2〉, P) com∼
P

(〈Σ1;σ1〉, P).

By (32), there exist P •!2 and β′ such that τ P•!2∼
!
β′, and for all P •?2 and ~v′ such that

τ
P•?2∼
?
β′(~v′), there exist Σ′′1 , σ′′1 and P ′, such that

〈Σ1;σ1〉
β′(~v′)
� η 〈Σ′′1 ;σ′′1 〉 (33)

(〈Σ′′2 ;σ′′2 〉, P ′′)
com∼
P

(〈Σ′′1 ;σ′′1 〉, P ′′) (34)

By τ
P•!2∼
!
β′, we have β′ = τ or β′ = �. The universally quantified P •?2 can be

instantiated with any policy in the non-empty Pch, and ~v′ with any value vector

26 Disjunctive Information Flow for Communicating Processes

of the appropriate length, for τ P•?2∼
?
β′(~v′) to be satisfied. We thus obtain (33) and

(34). By P ◦(ch(α)) = H, Lemma 22, and (33), β′ cannot be τ . Hence β′ = �, and
Σ′′1 = Σ1 and σ′′1 = σ1.
By symmetry of − com∼

P
−, and (34), we have

(〈Σ1;σ1〉, P ′′)
com∼
P

(〈Σ′′2 ;σ′′2 〉, P ′′).

By transition (25), there exist P •!3 and β′′ such that α P•!3∼
!
β′′, and for all P •?3 and ~v′′

satisfying α P•?3∼
?
β′′(~v′′), there exist Σ′′′2 , σ′′′2 and P ′′′ such that

〈Σ′′2 ;σ′′2 〉
β′′(~v′′)
� η 〈Σ′′′2 ;σ′′′2 〉 (35)

(〈Σ′1;σ′1〉, P ′′′)
com∼
P

(〈Σ′′′2 ;σ′′′2 〉, P ′′′) (36)

By P ◦(ch(α)) = H, (20), and Lemma 33, there exists a content policy instantiating
P •?3, such that for all value vectors of the appropriate length for ~v′′, α P•?3∼

?
β′′(~v′′)

holds. We thus obtain (35) and (36). We also know β′′ = ε; hence Σ′′′2 = Σ′′2 and
σ′′′2 = σ′′2 . Hence transition (22) can be simulated by 〈Σ2;σ2; q2〉

τ−→η 〈Σ′′2 ;σ′′2 ; q′2〉
in R∆, resulting in ((〈Σ′1;σ′1; q′1〉, P ′′′), (〈Σ′′2 ;σ′′2 ; q′2〉, P ′′′)) ∈ R∆.

2. Transition (22) is 〈Σ1;σ1; q1〉
�−→η 〈Σ′1;σ′1; q′1〉. We have Σ′1 = Σ1, σ′1 = σ1, and

¬(∃α′ : 〈Σ1;σ1〉
α′−→)η. (37)

Compared with case 1, we argue more briefly, since no new insight is needed. A case split
is made on the transition that can happen from 〈Σ2;σ2〉, over the processes in η. By (37)
we have 〈Σ1;σ1〉

�
�η 〈Σ′1;σ′1〉. By Lemma 32, the only possible cases are the following.

a. There is transition 〈Σ2;σ2〉
α′−→η 〈Σ′2;σ′2〉 for some Σ′2, σ′2 and α′ such that P ◦(ch(α′)) =

H. It can be deduced that (〈Σ1;σ1〉, P ′)
com∼
P

(〈Σ′2;σ′2〉, P ′) for some P ′. Hence

the transition 〈Σ1;σ1; q1〉
�−→η 〈Σ′1;σ′1; q′1〉 can be simulated by 〈Σ2;σ2; q2〉

α′−→η

〈Σ′2;σ′2; q′2〉 in R∆.
b. There is transition 〈Σ2;σ2〉

τ−→η 〈Σ′2;σ′2〉 for some Σ′2 and σ′2. We can still deduce
(〈Σ1;σ1〉, P ′)

com∼
P

(〈Σ′2;σ′2〉, P ′) for some P ′. The simulation in R∆ is by the transition

〈Σ2;σ2; q2〉
α′−→η 〈Σ′2;σ′2; q′2〉.

c. ¬(∃α′ : 〈Σ2;σ2〉
α′−→). The transition 〈Σ1;σ1; q1〉

�−→η 〈Σ′1;σ′1; q′1〉 (note that Σ′1 =
Σ1 and σ′1 = σ1) can be simulated by 〈Σ2;σ2; q2〉

�−→η 〈Σ2;σ2; q′2〉, resulting in
((〈Σ1;σ1; q′1〉, P), (〈Σ2;σ2; q′2〉, P)) ∈ R∆.

The cases above are exhaustive and the proof is complete. J

	Introduction
	Motivating Example
	The Language
	Security Policies
	The Type System
	Noninterference
	Noninterference under Deterministic Schedulers
	Conclusion and Discussion
	Proof Sketch

