
A Switch, in Time∗

Sanjiva Prasad1 and Lenore D. Zuck2

1 Department of Computer Science and Engineering, Indian Institute of
Technology Delhi
New Delhi, India
sanjiva@cse.iitd.ac.in

2 Department of Computer Science, University of Illinois at Chicago
Chicago, USA
lenore@cs.uic.edu

Abstract
Communication networks are quintessential concurrent and distributed systems, posing verifica-
tion challenges concerning network protocols, reliability, resilience and fault-tolerance, and secur-
ity. While techniques based on logic and process calculi have been employed in the verification of
various protocols, there is a mismatch between the abstractions used in these approaches and the
essential structure of networks. In particular, the formal models do not accurately capture the
organization of networks in terms of (fast but dumb) table-based switches forwarding structured
messages, with intelligence/control located only at the end-points.

To bridge this gap, we propose an extension of the axiomatic basis of communication proposed
by Karsten et al. In this paper, a simple model of abstract switches and table-based prefix
rewriting is characterized axiomatically using temporal logic. This formulation is able to address
reconfigurations over time of the network. We illustrate our framework with simple examples
drawn from SDNs, IPv6 mobility and anonymous routing protocols.

1998 ACM Subject Classification C.2.1 Network Architecture and Design. C.2.2 Network Proto-
cols. D.2.4 Software/Program Verification. D.4.6 Security and Protection. E.1 Data Structures.
F.3.1 Specifying and Verifying and Reasoning about Programs. F.4.1 Mathematical Logic.

Keywords and phrases Abstract switches, network protocols, data plane, control, time-dependent
behavior, correctness.

1 Introduction

Communication networks are quintessential concurrent and distributed systems. Apart from
issues pertaining to scale and efficient implementation, networks pose challenging verification
and validation problems such as the correctness of protocols, reliability, resilience and fault-
tolerance, and security. Indeed, the correct operation of most distributed systems depends
on the correctness of networks and their protocols.

Networks are organized as a “stack” of several protocol layers, from the physical to
application (and beyond), with the workhorse being the network layer and the suite of IP
protocols configured as a reticulum of fast (but “dumb”) table-based routers/switches that
forward packets. “Intelligence” is confined to the peripheries of the data forwarding network [5].
Much of the robustness and efficiency of the Internet derives from this architecture. Proposals
to embed greater intelligence into the data network often (i) suffer from inefficiency, (ii) are
difficult to deploy, configure and maintain, and (iii) may introduce potential vulnerabilities.

∗ This work was partially supported by a grant from Microsoft Research to the first author, and NSF
CCS-1228697 to the second author.

© Sanjiva Prasad and Lenore D. Zuck;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A Switch, in Time

Several formal techniques have been used to model and verify different aspects of a
wide variety of network protocols. Approaches based on automata and temporal logic have
traditionally been used to reason about fundamental protocols. Modal logics (particularly of
knowledge) have been used to formulate protocol correctness [10, 12]. However, verifying
whether a system satisfies a given property usually requires considerable expertise since
one has to formalize within the framework the behavior of all agents, including that of the
adversary/environment.

The AVISPA project [3] and subsequent lines of research, e.g. [4, 7] comprise a large
body of work involving the automated validation of internet security protocols. Several
security properties have been expressed using LTL with a “sometime in the past” operator
[17], following which model-checking techniques have been used to verify or detect errors in
a large number of widely used protocols and their salient properties. Such Safety Temporal
Properties are of the form 0(P →QQ), which roughly states: “For any reachable state
satisfying a property P , there was a past state satisfying Q.”

An alternative approach uses process calculi to provide a formal operational model of the
system, and where the adversarial context is mapped to the generic notion of an observer. For
example, CCS has been used for modeling the alternating bit protocol [18, 6]; the π-calculus
for mobile handover protocols [19]; and the applied π-calculus for security protocols [1]. While
the process calculus approach is attractive as it comes equipped with notions of equivalence
such as bisimulation and their associated proof techniques, stating logical properties about
the protocols is not always easy.

Although these approaches have been successful in formally modeling and verifying various
network protocols, they have done so by abstracting away much of the essential structure of
communication networks. There is a mismatch between the structure of networks and the
manner in which they are represented in these ad hoc (used in the original, non-pejorative
sense) abstract models. While the hierarchical structure of the network stack presents
apparently abstract and modular structures, these do not correlate well with the formal
notions of abstraction and refinement. When attempting to refine the elegant abstract
models to account for the nitty-gritty details of network structure and behavior, the formal
approaches often end up “over-modeling” mundane or irrelevant details about, say, data
delivery. Another issue is the lack of modularity when combining different analyses (e.g.,
routing and security) that were independently modeled and verified under assumptions of
orthogonality, and often in quite different formalisms.

We therefore posit that it is important to have a simple modular framework for reasoning
about the delivery of data messages that corresponds well with the actual structures of
communication networks over which other analyses may be formalized. A presentation that is
general enough to capture the complexities of existing data networks which is also compatible
with existing formal operational and logical models (for modeling and specification) will
facilitate robust proofs of correctness. Indeed, we hope that the many of analyses in the
literature can be adapted and refined to work in a modular fashion with such a framework.

In this paper, we propose a framework in which data communication network structures
and behavior may be represented at any appropriate level of detail. The framework naturally
admits refinements in the description of the network elements as well as in the logical
specification of their behavior. An organizing principle in our treatment is a systematic
separation between the data and control planes. This factoring of network structure and
function into a data plane and control plane has gained far greater importance with the
advent of Software Defined Networks (SDNs) [15], which are motivated by the need to
respond to the dynamics of network events and to enforce policies in continuously changing

S. Prasad and L. Zuck 3

environments.
The main contribution of this paper is an abstract presentation of the structure and

operational behavior of the data plane. The description of the data plane is (in logical terms)
an extension of the formal model of abstract switches presented in [14]. The advantages of
choosing that framework lie in (1) its ability to formalize fundamental network concepts
(names, addresses, links, scopes, etc.) at all layers of the so-called network stack as well as
across layers; (2) its operational simplicity (being based on table-based prefix rewriting); (3)
its axiomatic treatment of arbitrarily complex multi-layer forwarding systems [14]; (4) its
natural support for refinement and compositionality [21]; (5) that it can be easily interfaced
with process calculi, typically for expressing the control protocols.

The new contribution of this paper is a reformulation of the axiomatic basis for com-
munication using temporal logic. This presentation enables a description of time-varying
routing behavior and associated properties. It also supports a more natural form of reasoning
about network invariants, abstracting from detailed reasoning about topological structure.
The version of LTL that we employ in this paper is expressive enough for stating the desired
time-dependent properties, and admits hierarchical reasoning about the model [16].

We illustrate our approach by presenting a fresh and concise analysis of the IPv6 mobility
model using temporal logic. This is in contrast to the detailed process calculus model of
[2], where the correctness properties were not explicitly stated, and the correctness of the
protocol was expressed as barbed equivalence [22] to a simpler reference system. We next
present an extension that enables switches perform cryptographic operations on messages.
We model an anonymizing network service such as TOR [8], and outline how one may reason
about the correctness of the design of such anonymizing network services by using knowledge
modalities. In our exposition of the framework and approach, we have attempted to convey
the intuitions, restricting the formalism to the bare essentials.

Paper structure.

In Section 2 we reformulate the basic model of abstract switches proposed in [14, 21] in
temporal logic terms. We extend the framework to allow dynamic updates of switching
tables, with an example drawn from simple updates in SDNs. Section 3 presents the IPv6
mobility protocol and a fresh proof of its correctness. Section 4 endows the switches with the
ability to perform functional transformations on messages, the use of which is illustrated via a
simplified version of the TOR anonymizing network service, and an outline of its correctness
using knowledge modalities. We conclude in Section 5 with a recap of the main ideas of this
paper, and some directions for future work.

2 The model

The architecture of our model reflects ideas from Software Defined Networks (SDNs). The
network’s operation is decoupled into a data plane — a collection of fast (unintelligent)
table-based switching elements that relay messages — and a control plane, the part of a
network that carries signaling traffic and is responsible for routing. The occurrence of events
in the data plane triggers the control plane to initiate changes in switches/routers in the
data plane. We describe here the structure and behavior of the data plane, which is designed
to be a generic message delivery architecture, agnostic to the control operations. The data
plane can be seen as a massive distributed system, with many orders of magnitude more
messages than those in the control plane. The purpose of most control plane protocols is to
configure or make changes in the data plane, which should continue to operate concurrently

4 A Switch, in Time

XXA

XB

Xא

XZ

Xב

Xת

p m

Switching
Rules

(A,p)➛{(ב,ּq),(ת,r)}
r m

q m

Figure 1 Schematic view of an Abstract Switch

while those changes are effected. Network protocols in the control plane may be described in
any of a variety of process calculi or other formalisms. The examples in this paper do not
focus on the specification and operation of the control protocols, but models their effects on
the data plane. While our account omits the precise interface between the two planes, we
believe this would be relatively straightforward to specify.

2.1 The data plane model
The data plane is a directed graph the nodes of which are abstract switches (ASs), denoted
as A,B,C, . . .X, Y, Z. Switches represent any processing elements — hardware or software —
at any level of the network stack. Each AS has a number of named input and output ports.
These ports are the end-points of simplex directed edges (written e(A,B)) between adjacent
ASs. We use the notation AB and

A
B to denote the output port at A directly connected to

B, and the input port at B with an incoming edge from A. We write ?B and A? when we
wish to leave unspecified a port’s connection. Generic ports are denoted x, y, z.

The ASs send messages along the edges. Messages are represented as strings of identifiers
drawn from an arbitrary alphabet Σ. Typical messages are denoted m,m′, . . . and prefixes of
messages are usually denoted as p, p′, . . . The presence of a message m at a port x is denoted
as m@x. Creation and consumption of messages may be internalized within the system as
follows: The creation of a message m at B is modeled as m being at a (virtual logical) port
0B, and its consumption as it being at the (virtual logical) port B0 .

An AS maintains a local switching table. The switching table at AS B, denoted as SB,
contains mappings of the form 〈A, p〉 7→ {〈Ci, p

′
i〉}, which maps an AS-prefix pair to a set

of AS-prefix pairs. The table represents a finite-domain function, which may not be defined
for several 〈A, p〉 pairs. The switching table specifies a local prefix rewriting system at that
AS. We assume that switching table entries are exact matches, i.e., if SB [A, p] 6= ∅, then for
no prefix p′ of p is SB [A, p′] 6= ∅1. The correctness of computer network protocols crucially
hinges on the distributed state of the switching tables collectively satisfying and maintaining
certain properties that ensure deliverability of messages.

1 This assumption is to keep the model simple; more complex matching rules such as matching with
the maximal prefix, or allowing for priorities among potential prefixes may be viewed as practical
optimizations.

S. Prasad and L. Zuck 5

Informally, the operation of model is: When a message pm appears on the input port
A
B

such that SB has an entry 〈A, p〉 7→ {〈Ci, p
′
i〉}, then for each i, a message p′im is placed on

the output port BCi . Note that the switching tables at different ASs may be quite different.

I Definition 1. A message m arriving at an input port
X
A is called a barb, written m@

X
A ↑,

if SA[X, p] = ∅ for each prefix p of m.

Barbs are the observables of the data plane, which occur when a switch is unable to handle
an incoming message. Barbs can form the basis for an operational account of the data plane’s
behavior. In this paper, instead, we provide a logical account of the behavior.

2.2 Axioms
The following axiom schema specify the behavior of edges and switches.

RT1. (Direct Communication)

e(A,B) ∧m@A
B

⇒ 1 (m@
A
B)

RT2. (Local Switching)

pm@
A
B ∧ 〈C, p′〉 ∈ SB [A, p] ⇒ 1 (p′m@B

C

)

Axiom RT1 describes direct communication between ASs. If there is a direct edge from
A to B, a message on output port AB eventually appears on the input port

A
B. Axiom RT2

expresses the lookup and switching capability of an AS. If a message with prefix p is at an
input port of B and the switching table there indicates that a message with this prefix at
that input port should have its prefix rewritten to p′ and placed on output port, then the
transformed message eventually appears at that port. Note that RT2 also covers any form of
multi-recipient forwarding, such as multicast, since SB [A, p] may have multiple elements.

These axiom schema capture a notion of deliverability, and apply to message transmission
between ASs at any two levels in the protocol stack in the data plane. For simplicity of
exposition, we assume that messages do not get lost or corrupted at ASs or at edges. Note
that loss and corruption of messages may be explicitly simulated within the model by using
suitably defined ASs. The model naturally permits message reordering. The model is
completely distributed: ASs may operate concurrently and independent of one another, and
even the operations on messages at the same/different ports of an AS may be concurrent.

We write m@x m′@y (read relays-to2) as convenient shorthand for m@x ⇒1m′@y.
For brevity, we write, e.g., m@x m′@y m′′@z for m@x ⇒ 1m′@y ∧ m′@y ⇒
1m′′@z. The relays-to relation helps define a number of well-known communication
concepts.

Let A and B be ASs and p 6= ε. We then define:

Name. Prefix p is a name for B at A if

∃X,Y, Z : ∃p′ 6= ε : ∀m : pm@
X
A p′m@

Y
B m@B

Z

.

The name for an AS B at another AS A is a non-empty prefix that is removed when
a message is transmitted from A to B. By default, names are local and their meaning is

2 In [14], this relation was inductively defined using four axiom schema, two of which – reflexivity and
transitivity — are implicit in temporal logic.

6 A Switch, in Time

relative to the AS where they are interpreted. Note that p can be a name at A for multiple
ASs, and that the ASs denoted by a name can vary with changes to switching tables. The
condition p′ 6= ε ensures that B is indeed the AS where the prefix or any residual of it is
removed.

Address. Prefix p is an address for B at A if

∀X : ∃Y,Z : ∀m : pm@
X
A pm@

Y
B m@B

Z

.

An address is a special kind of name whose meaning is independent of the input port, and
which does not change along the path traversed by a message (though the ASs between A
and B may add prefixes to pm). Note that p can be an address for multiple ASs.

Tunnel. There is a tunnel from A to B if

∃W,X, Y, Z : ∃p, p′ 6= ε : ∀m : m@
W
A pm@A

X

 p′m@
Y
B m@B

Z

A tunnel from A to B takes a message at A, “wraps” it with a prefix, and delivers it
to B where it is unwrapped. Tunnels provide a means for abstracting away the series of
intermediate edges that establish the connection between two nodes. Let tunnel(

W
A,B

Z)
denote the existence of a tunnel between A and B with entry and exit ports at W,Z.

Tunnels can be composed (by connecting the output port of the first to the input port of
the second):

I Lemma 2 (Tunnel Composition). Suppose tunnel(
W
A,B

X) and tunnel(
Y
B,C

Z), then (by
linking BX to

Y
B), tunnel(

W
A,C

Z).

2.3 Table Updates
Network events necessitate dynamic updates to switching tables. New entries can be added
and existing entries modified or deleted. Updates to switching tables occur relatively
infrequently and are atomic. Consequently, we may safely assume that at each point in the
execution the tables are stable and well defined.

An update S1
B of SB is monotone if for every 〈C, p′〉 ∈ SB[A, p], 〈C, p′〉 ∈ S1

B[A, p]. The
update S1

B preserves a name for A at C if the name is not disturbed by the update. Similarly,
the update S1

B preserves a tunnel from A to C if this tunnel is not disturbed by the update.

I Lemma 3. Monotone updates preserve names and tunnels.

Example: Routing updates in SDNs

The occurrence of a barb in the data plane indicates that at some AS there is no switching
rule for handling a message that arrived there. This may indicate an error in the protocol.
However, if the tables have been properly configured (as presumed), the barb is an event
that necessitates action on part of the control plane to update the switching tables. Such
an event may occur, for instance, when a new device has been introduced into the network,
and messages addressed to it need to be forwarded. Typically, the control plane responds by
placing output messages at some output ports and performing a monotone update to the
switching table of that AS. Lemma 3 implies that such SDN updates preserve names and
tunnels.

I Corollary 4. Routing updates in SDNs preserve names and tunnels.

S. Prasad and L. Zuck 7

Routing updates, being monotone, preserve deliverability of messages. Note though, that
while they are intended to remove the barbs that triggered them, they may introduce new
barbs at other nodes.

Further, they may introduce forwarding cycles, which cause messages to traverse cycles. A
message m is said to traverse a cycle if for some A, p, p′, p′′, X, Y, Z, pm@

X
A p′m@AY

p′′m@

Z
A. Note that a message traversing a cycle does not necessarily imply that it will

remain in that loop indefinitely — by returning to A at a different input port, and/or with a
different prefix p′′, it may be switched differently the second time around. Another way that
forwarding cycles may be broken is via updates to a switching table.

3 IP Mobility

Changes in the network topology may disrupt the “relays-to” relation, resulting in the
invalidation of certain names or a change in their meaning. This may be repaired by updates
to one or more switching tables. A good example of such updates occurs in IPv6 mobility
[20], the essence of which we model here.

3.1 Tunnel maintenance
Recall that tunnels allow us to abstract from the details of all nodes and direct edges in the
network graph. Thus we can focus on only IP layer nodes and tunnels between them. For
each node A, let nA be its universal address (a “well-known address” in networks parlance).
We write tunnel(nB)(X,Y) to indicate that at AS X the switching tables are configured to
tunnel any message with prefix nB to Y .

IPv6 support for mobility is based on a proxy architecture, where a mobile node B is
associated with

its identifying IP address nB ;
its home router, denoted H(B), which never changes;
its current location, denoted h(B), which may change over time. At any point in time, B
is “hosted by” at most one router.

We assume that if a message intended for B reaches h(B), it will eventually be delivered
to B.

(mIP) nBm@?h(B) ⇒1(m@B
?
)

In a stable state of the network, a sender sends a message to a mobile node B by either
1. tunneling it to B’s home router H(B) (B’s default location); (a) if B is at home

(h(B) = H(B)), the message will be delivered to B. (b) if B is away (h(B) 6= H(B)),
H(B) tunnels it to h(B), which H(B) presumably knows.

2. alternatively, if the sender knows h(B), it may tunnel the message to h(B).
In all the above cases, Lemma 2 and (mIP) ensure that the message will be delivered to B.

However, when B moves, we cannot assume that h(B) will be known to nodes, in particular
to H(B), wishing to communicate with it. With a small number of control messages that
eventually lead to (re)establishing correct forwarding tables, the IPv6 mobility protocol
achieves correct forwarding of messages. We focus here only on the effects of the control
messages on the switching tables. It is the control protocol’s responsibility to ensure that
table update messages received out-of-order are ignored (this can be achieved using sequence
numbers).

Let B be any node. We assume that initially for every X 6= H(B), tunnel(nB)(X,H(B)).
Moreover, at any time, if nodes X and Y are not in {H(B), h(B)} and tunnel(nB)(Y,X)

8 A Switch, in Time

exists, this tunnel can be removed and replaced by tunnel(nB)(Y,H(B)) (a “time-out reset”).
Once registered at h(B), B (or h(B) on its behalf) may send control messages to any
correspondent node A not necessarily involved in the move, telling A of its current location,
in which case A may update to tunnel(nB)(Y, h(B)). The only possible other nB-tunnel
changes are triggered by B’s moves, with the associated mandatory updates summarized in
Fig. 2.

Move Remove Tunnels Create Tunnel
H(B) to F1 tunnel(nB)(F1, X), tunnel(nB)(H(B), F1)

tunnel(nB)(H(B), X) X 6= F1

F1 to H(B) tunnel(nB)(F1, X) X 6= H(B) tunnel(nB)(F1, H(B))
tunnel(nB)(H(B), X)

F1 to F2 tunnel(nB)(F2, X) tunnel(nB)(H(B), F2)
tunnel(nB)(H(B), F1) exactly one of tunnel(nB)(F1, F2)

or tunnel(nB)(F1, H(B))

Figure 2 Tunnel updating on moves

The IPv6 protocol implementation is assumed to ensure that control messages will
get delivered, especially to the home network, and consequently that there are no ways of
creating tunnel(nB)(X,Y) other than those in Fig. 2, or by “timing out”. We assume that
the removal and creation of tunnels at a single AS happens atomically. Observe that the
updates mentioned are not monotonic.

3.2 Properties
By induction on the tunnel update moves, we can prove the following properties:

Tunnel Endpoint. Tunnels only end at previously visited hosts.

∀X. tunnel(nB)(X,Y) ⇒ (Y = H(B) ∨ Q(Y = h(B))

No Wandering. Messages (at tunnel end-points) can only visit their sender, receiver, the
receiver’s home or any node that hosted it: For every message m from sender A to receiver
B,

∀X.nBm@?X ⇒ (X = A ∨ X = B ∨ X = H(B) ∨ Q(X = h(B)))

Note that all tunnels created in response to control messages involve a router that has
been visited earlier.

No Forwarding Cycles. Tunnels do not form a true cycle3. Let (tunnel∗)(nB) be the transitive
closure of tunnel(nB) as per Lemma 2.

∀X : ¬((tunnel∗)(nB)(X,X))

I Lemma 5. If the mobile node settles at its home, eventually there is permanent tunnel
from all other nodes to its home.

0(h(B) = H(B)) ⇒ ∀Y 6= H(B).10 tunnel(nB)(Y,H(B))

3 Actually, this property can be weakened to one requiring only that any such forwarding cycle will
eventually get broken.

S. Prasad and L. Zuck 9

Proof. Let σ be a computation satisfying 0(h(B) = H(B)) and let Y /∈ {B,H(B)}. Initially
tunnel(nB)(Y,H(B)); from the “time-out” action or if B moves, it follows from the rules of
Fig. 2 that there exists a suffix σ′ of σ where tunnel(nB)(Y,H(B)). Now, since B remains at
H(B), Y creates no other tunnel for nB . Thus, σ′ satisfies 0(tunnel(nB)(Y,H(B))). J

Of course, there may be points in a computation where a nB-tunnel does not exist to B’s
location. However, by the eventual delivery of control messages, or by time-out, such a tunnel
will be constructed. Observe that the model does not place any buffer-space limitations or
delivery-order restrictions on messages, so in an implementation, their deliverability relies
on buffering them until a tunnel is (re-)constructed. The next lemma addresses nB-tunnels
when B settles at a non-home node.

I Lemma 6. If the mobile node settles at a place, there is a tunnel from home to that place,
and a tunnel from every previously visited node to either home or to that permanent host.
The proof is similar to that of Lemma 5.

∀X,Y.0(h(B) = X ∧ X 6= H(B) ∧ Y /∈ {h(B), H(B)}) ⇒

10

(
tunnel(nB)(H(B), h(B))
∧ (tunnel(nB)(Y, h(B)) ∨ tunnel(nB)(Y,H(B)))

)

Theorem 7 establishes that if a node remains at a single host for sufficiently long, then it
will receive every message sent to it.

I Theorem 7. If a mobile node settles, any message addressed to it eventually gets delivered.

0(h(B) = X) ⇒ (nBm@?A ⇒1(m@B
?
))

Proof. Let σ be a computation satisfying 0(h(B) = X), and assume nBm@?A holds. From
Lemmas 5 and 6 it follows that there exists a suffix σ′ of σ such that σ′ |= 0(tunnel(nB)(Y,X)
for every Y /∈ {X,H(B), B}. The No Wandering property establishes that at the initial state
of σ′, m has either already reached its destination B or is at some other node. In the latter
case, once in σ′, m will be forwarded through the permanent tunnel to X, and eventually
reach B by (mIP). J

The theorem does not (incorrectly) claim that messages cannot go into a cycle. The No
Forwarding Cycles property guarantees it does not stay in a cycle if the mobile node settles
(rendered as “ever after” in LTL) at a host. However, if a mobile node B does not stay “long
enough” at any node, a message may forever keep chasing it without ever catching up with it.

This theorem has been validated for a finite version of the model using TLV.

4 Security primitives: the TOR example

In addition to routing, security is an important issue in network protocols. Encryption
and decryption operations on messages motivate an extension to the model of Section 2 by
allowing switches to perform cryptographic and other functional transformations on messages.
We illustrate the extension by presenting the essence of the TOR [8] architecture, which is
designed to support anonymous communication. Formal notions of anonymity have always
been among the hardest security properties to capture [13].

We modify the Local Switching axiom to

RT2′ pm@
A
B ∧ 〈C, p′, fABC〉 ∈ SB [A, p] ⇒ 1 (p′m′@B

C

) (m′ = fABC(p,m))

10 A Switch, in Time

1A

nA

A

1B

mB

B

ZYX W

Figure 3 Schematic View of TOR

SB , the switching table at ASB, now contains mappings of the form 〈A, p〉 7→ {〈C, p′, fABC〉},
where C and p′ are as before, and fABC is a function that transforms messages: a message
placed on an output port is a functional transformation of the incoming message, where the
function may depend on the switch B and on the input and output ports. This generalization
permits expressing a variety of operations, such as hashing, route recording, etc.

4.1 TOR
TOR (The Onion Router) is a low-latency anonymous communication service. To send an
anonymous message, a client chooses at least three intermediate routers to be used as a
chain of relays to the recipient. The client establishes shared secret session keys with each of
the intermediate TOR nodes, and encrypts the message successively with these keys in the
inverse order with respect to the routers through which the message will pass. The TOR
routers are only aware of their successor and predecessor nodes in the relay chain. The
protocol is designed to ensure that none of the intermediate routers are aware of both the
sender and receiver of the message.

For example, suppose sender A ∈ A, where A is the set of potential senders, wishes
to sends a message m to receiver B ∈ B (B is the set of potential destinations) via TOR
nodes X;Y ;Z. To simplify the presentation, we connect Z to an extra (non-TOR) “fan-out”
router W to communicate with the actual recipient of the message. (See Fig. 3, where for
simplifying the exposition, we depict the tunnels between the routers as direct links).

Client node A sends to the first TOR router X the message

mA = nX EX(nY EY (nZ EZ(nBmB)︸ ︷︷ ︸
mZ

)

︸ ︷︷ ︸
mY

)

︸ ︷︷ ︸
mZ

where Ei(m′) is the cipher text obtained by encrypting m′ with the key shared between A
and i; each ni is the “well-known” address of i. Upon receipt of a message each TOR node
decrypts it using the shared key, and transmits the result to the next node in the chain. Here
anonymity implies that neither Y nor Z is able to learn the identity of sender A, and neither
X nor Y can learn the identity of receiver B from a set of potential senders and receivers of
the message.

The TOR protocol involves a very special version of switching, where the switching
decisions are not made based on the prefixes of the messages but rather are effected based on
the content of the messages. Moreover, the function fABC at TOR nodes depends only on B
(in fact on the key shared by B with the TOR client): for every A′ and C ′, fA′BC′ = fABC .
We therefore refer to the switch transformation function as fB .

S. Prasad and L. Zuck 11

SupposeX is the ingress TOR router, with input messages from possible sources A1, . . . Ak.
The switching table at the ingress router X has entries of the form:

〈Ai, nX〉 7→ 〈Y, ε, E−1
X 〉

where E−1
X is the decryption function using the key shared with the client and X. When X

receives the message nXEX(nY mY), it places nY mY on the output port to Y . Note that
since X does not have the keys shared between A and Y , it cannot learn that the message is
intended for B. At the intermediate TOR router Y , with predecessor X and successor Y ,
the switching table has entries of the form:

〈X,nY 〉 7→ 〈Z, ε, E−1
Y 〉

When Y receives the message nY mZ , it places nZmZ on the output port to Z. Since Y
does not have the keys shared between A,Z, it cannot learn that the message is intended
for B, nor does it know the source A of this message, since the message was from the input
port from X. At the TOR router Z, with predecessor Y and a single egress router W which
connects to nodes in B, the switching table is:

〈Y, nZ〉 7→ 〈W, ε,E−1
Z 〉

When Z receives the message nZEZ(nBmB), it places nBmB on the output port to W .
Router Z does not have any indication of the source A of this message, since all messages
were on the input port from Y .

4.2 Proving Some TOR properties
Our main technique for proving correctness of TOR is derived from the strand formalism in
[11], which supports a representation of the execution of a protocol in terms of local views of
principals and the messages exchanged in that execution.

Security protocols are cast as cryptoalgebras in [11], where to decrypt an encrypted
term t = EP (m), an adversary needs to have received prior messages from which EP can
be derived. Though the Dolev-Yao model [9] abstracts from more realistic assumptions
regarding message structure and cryptographic schemes addressed by [11] (e.g., bounds on
message length, the particular encryption/decryption functions, and ability to guess keys
and ciphers), it is considered a standard adversarial model for formal security analysis. For
the purpose of this section, we restrict to the Dolev-Yao model. Recall that a Dolev-Yao
adversary can only encrypt/decrypt messages whose keys it possesses.

Following terminology roughly influenced by formal reasoning about knowledge (see, e.g.,
[10, 12]), let Ki(z) denote that a participant i knows the value of a variable z. Initially,
every participant P knows the names of all participants and the encryption/decryption keys
to which it is privy, i.e, KP (nQ) for every participant P and Q, and KP (EP). The adversary
may know additional keys, but we assume that it knows at most two of the three keys A
shares with X, Y , and Z. During the course of the protocol, the adversary may decrypt any
messages whose encryption keys it knows, as well as send messages that may be encrypted
with keys known to it. Moreover, for every honest participant P , the encryption key EP can
never be derived, that is, honest participants never send any information that reveals their
keys. In particular, if the adversary does not initially know Ei and cannot derive it from any
message it had seen, then it cannot decrypt any message encrypted with Ei.

We assume that every participant knows the sets A and B. For TOR message m, let
src(m) ∈ A be its source and dest(m) ∈ B be its intended destination. Thus, when a TOR

12 A Switch, in Time

message m is received, for every participant P , KP (src(m) ∈ A) and Kadv(dest(m) ∈ B).
Moreover, for every honest participant P , ¬Kadv(EP).

Our goal is to show that no participant, but for the source and destination, get to learn
both source and destination of a TOR message even if adversary knows all but one key of an
intermediate node.

I Theorem 8. For every TOR message mA and every participant P 6= A,B,

0 ¬(KP (src(mA)) ∧ KP (dest(mA)))

even if two of X, Y , and Z are compromised.

Proof Outline. We present the most commonly studied case, where X and Z are comprom-
ised, but not Y . Initially Kadv(EX) and Kadv(EZ). When mA = nXmY @?X, the adversary
can learn src(mA). We have to show that it never learns dest(mA). From our assumption
it follows that 0 ¬Kadv(EY). In the protocol, X sends the message mY , thus eventually
mX = nY mY @?Y . While the adversary may know mX@?Y , from our assumptions it follows
that it cannot decipher mY , and hence, cannot associate the event mZ = nZmZ@Y ? with
the message mA. That is, it cannot derive that mZ = nY EY (mZ). From here the adversary
cannot determine that mZ@Y ? implies thatQmA@?X, from which the claim follows. J

5 Conclusions

The disparity between the structure and behavior of computer networks and the abstract
formal models used for modeling and verifying protocols motivated us to present a modular
logical account of the data plane of networks. By separating the data plane from control
protocol descriptions, we hope that formal analyses of various control protocols (routing,
security, etc.) can be performed independently of modeling the details of message delivery
within a given abstract framework. Our framework provides a general model of message relay
at multiple layers of the network stack, thereby supporting formal analyses using appropriate
abstractions that accurately capture real network behavior. By ensuring that the data plane
model is presented in a manner that naturally admits refinements, both in temporal logical
specifications and in the hierarchical structure, we claim that the resultant framework can
support more robust proofs of correctness. In this paper, we have accounted for changes in
the routing and forwarding topologies, and can specify and model network structure and
behavior that changes over time.

To our knowledge there are few formal models of networks, and fewer that account for
dynamic changes to network structure. The example we chose to illustrate our approach,
i.e., modeling IPv6 mobility shows how one can construct concise and abstract proofs of
correctness of a protocol, without modeling too many operational details of the protocol
and the network. Our analysis is minimalist in that it does not mistakenly claim stronger
properties than are necessary. For example, some formal analyses of IPv6 mobility claimed
(incorrectly) that the protocol does not allow data messages traverse cycles, or that forwarding
cycles are never created. The correctness of the protocol, however, hinges on a far weaker
property: that any temporarily created message or forwarding cycles will be broken ("sooner
or later" – though this argument is made without explicitly reasoning about time).

The other generalization made in this paper is to endow switches with the ability to
perform functional transformations on messages. This supports the modeling of a large
variety of security protocols within the data plane. We are unaware of any earlier formal
logical account of the correctness of the TOR protocol in providing anonymity.

S. Prasad and L. Zuck 13

In this paper, the two extensions — dealing with dynamic changes in the forwarding
topologies and providing switches with the ability to transform messages — have been treated
orthogonally. We believe that there are a large number of time-dependent security protocols
that can fruitfully be explored in a combination of these extensions, for instance, whether
the TOR protocol provides perfect forward secrecy or perfect forward anonymity. Indeed,
the notion of anonymity merits further investigation. We expect that any serious formal
treatment of anonymity that respects the dynamics of networks will be based on notions
of indistinguishability (of names, messages, router behavior, local states, etc.), which we
believe can be characterized in a succinct yet robust way within our axiomatic basis for
communication.

Acknowledgements The authors want to thank the anonymous referees for their valuable
suggestions.

References
1 Martín Abadi and Cédric Fournet. Private authentication. Theor. Comput. Sci., 322(3):427–

476, 2004.
2 Roberto M. Amadio and Sanjiva Prasad. Modelling IP mobility. In CONCUR ’98: Con-

currency Theory, 9th International Conference, Nice, France, September 8-11, 1998, Pro-
ceedings, pages 301–316, 1998.

3 Alessandro Armando, David A. Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo
Mantovani, Sebastian Mödersheim, David von Oheimb, Michaël Rusinowitch, Judson San-
tiago, Mathieu Turuani, Luca Viganò, and Laurent Vigneron. The AVISPA tool for the
automated validation of internet security protocols and applications. In Computer Aided
Verification, 17th International Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-
10, 2005, Proceedings, pages 281–285, 2005.

4 Alessandro Armando, David A. Basin, Jorge Cuéllar, Michaël Rusinowitch, and Luca
Viganò. Automated reasoning for security protocol analysis. J. Autom. Reasoning, 36(1-
2):1–3, 2006.

5 David Clark. The design philosophy of the DARPA internet protocols. In Proceedings of
SIGCOMM ’88, pages 106–114, 8 1988.

6 Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency workbench. In
Automatic Verification Methods for Finite State Systems, International Workshop, Gren-
oble, France, June 12-14, 1989, Proceedings, pages 24–37, 1989.

7 Giorgio Delzanno and Pierre Ganty. Automatic verification of time sensitive cryptographic
protocols. In Tools and Algorithms for the Construction and Analysis of Systems, 10th
International Conference, TACAS 2004, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2,
2004, Proceedings, pages 342–356, 2004.

8 Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th USENIX Security Symposium, August 9-13, 2004,
San Diego, CA, USA, pages 303–320, 2004.

9 Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–207, 1983.

10 Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Knowledge-based
programs. In Proceedings of the Fourteenth Annual ACM Symposium on Principles of
Distributed Computing, Ottawa, Ontario, Canada, August 20-23, 1995, pages 153–163,
1995.

14 A Switch, in Time

11 Joshua D. Guttman, F. Javier Thayer, and Lenore D. Zuck. The faithfulness of abstract
protocol analysis: Message authentication. Journal of Computer Security, 12(6):865–891,
2004.

12 Joseph Y. Halpern and Lenore D. Zuck. A little knowledge goes a long way: Knowledge-
based derivations and correctness proofs for a family of protocols. J. ACM, 39(3):449–478,
July 1992.

13 Dominic J. D. Hughes and Vitaly Shmatikov. Information hiding, anonymity and privacy:
a modular approach. Journal of Computer Security, 12(1):3–36, 2004.

14 Martin Karsten, S. Keshav, Sanjiva Prasad, and Mirza Beg. An axiomatic basis for com-
munication. In Proceedings of the ACM SIGCOMM 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, Kyoto, Japan,
August 27-31, 2007, pages 217–228, 2007.

15 Diego Kreutz, Fernando M. V. Ramos, Paulo Jorge Esteves Veríssimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking: A com-
prehensive survey. Proceedings of the IEEE, 103(1):14–76, 2015.

16 Leslie Lamport. What good is temporal logic? In IFIP Congress, pages 657–668, 1983.
17 Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The glory of the past. In Proceedings

of the Conference on Logic of Programs, pages 196–218. Springer-Verlag, 1985.
18 Robin Milner. Communication and concurrency. PHI Series in computer science. Prentice

Hall, 1989.
19 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Inf.

Comput., 100(1):1–40, 1992.
20 Charles E. Perkins and David B. Johnson. Mobility support in ipv6. In Proceedings of the

2nd Annual International Conference on Mobile Computing and Networking, MobiCom ’96,
pages 27–37, New York, NY, USA, 1996. ACM.

21 Sanjiva Prasad. Abstract switches: A distributed model of communication and computa-
tion. In Perspectives in Concurrency Theory. CRC Press, 2009.

22 Davide Sangiorgi and David Walker. On barbed equivalences in pi-calculus. In CONCUR
2001 - Concurrency Theory, 12th International Conference, Aalborg, Denmark, August 20-
25, 2001, Proceedings, pages 292–304, 2001.

	Introduction
	The model
	The data plane model
	Axioms
	Table Updates

	IP Mobility
	Tunnel maintenance
	Properties

	Security primitives: the TOR example
	TOR
	Proving Some TOR properties

	Conclusions

