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Abstract

We study parameterized verification problems for concurrent systems with data enriched with

a permission model for invoking remote services. Processes are modelled via register automata.

Communication is achieved by rendez-vous with value passing. Permissions are represented as

graphs with an additional conflict relation to specify incompatible access rights. The resulting

model is inspired by communication architectures underlying operating systems for mobile devices.

We consider decision problems involving permission violations and data tracking formulated for

an arbitrary number of processes and use reductions to well structured transition systems to

obtain decidable fragments of the model.

1998 ACM Subject Classification F1.1 Models of Computation, F1.2 Modes of Computation,

D2.4 Software/Program Verification
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1 Introduction

Resource control is a very difficult task in presence of interprocess communication. An

interesting example comes from Android applications, whose underlying communication

model is based on RPC. In Android processes use special messages, called intents, to start

new activities. Intents can contain data that can thus be trasmitted from the caller to the

callee. Consider for instance the example in [9]. Assume that processes of type A (Activities

in Android) have permissions, statically declared in the Manifest, to retrieve user contact

details and to start new instances of process of type B. Furthermore, assume that, upon

reception of a start intent, a process of type B extracts the data and send them to a third

party. Process interaction does not directly violate the permissions declared in the Manifest.

However data exchanged by process instances can lead to leakage of private information.

In this paper we study the problem of resource control from the perspective of paramet-

erized verification, i.e., formal verification of concurrent systems composed by an arbitrary

number of components. We model processes as communicating register automata, i.e., auto-

mata with a local memory defined by a finite set of registers. Registers are used to store

identifiers, an abstract representation of resources. Rendez-vous communication with value

passing is used to model remote service invocations and data flows between components. To

control access to remote services, we define a permission model using two additional com-

ponents: a permission graph, whose edges are indicated A ⇀ B, where A and B are process

types, and a conflict relation A B again defined on process types.

For instance, we represent the above mentioned example in Fig. 1 where the permission

graph contains edges: C ⇀ A ⇀ B ⇀ I, C is a process that handles the contents of a device,

and I represents a potential intruder. We assume here that C I.

We consider verification problems that capture two types of design errors: permission

violations, i.e., a process instance invokes a service without rights, and conflict detection,

i.e., during a computation an identifier is transferred from a process of type A to a process

© Giorgio Delzanno

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


r1
s(c, 1)

C

r1

r(c, ↓1) s(s, 1)

A r1

r(s, ↓1) s(i, 1)

B r1
r(i, ↓1)

I

Figure 1 Register automata for our example.

of type B such that A and B are incompatible. Since processes are designed to operate in

an open environment, it is particularly interesting to consider verification problems in which

the number of concurrent processes in the initial configuration is not fixed a priori, i.e.,

parameterized verification. In the paper we first show that, despite of the fact that permis-

sion graphs are statically defined on finitely many process types, parameterized verification

of permission violations and conflict detection is undecidable in general. We then consider

fragments of the model by restricting the interplay between registers and message fields,

and show that it is possible to obtain non trivial fragments for which we can give decision

procedures for both properties. For properties that require data tracking, the proof consists

of two steps: we first extend the operational semantics with predicates that encode foot-

prints of data exchanged by processes. The additional information represent an unbounded

memory containing footprints that share information with the current state. The alphabet

used to represent the memory is infinite. We then show that the resulting semantics can

be represented symbolically via a low level language based on rewriting and constraints [11]

and infer decidability results from those obtained in that setting. In the general case of

r > 1 registers, the link with rewriting and constraints can be exploited to apply a symbolic

backward reachability engine [10] as a possibly non terminating procedure to verify absence

of violations and conflicts for any number of component instances.

2 Process Model

We model a concurrent system using a collection of interacting processes. Each process is

described by an automaton with operations over a finite set of registers. Data are identifiers

viewed as handlers to more complex resources. Communication is achieved via rendez-vous,

an abstraction of synchronization, message passing and remote procedure calls. We assume

here that send and receptions are executed without delays. A process can transmit part of

its current data to other nodes by inserting the current value of some of its registers inside

messages. Messages carry both a type and a finite tuple of data. A receiver can either

compare the data contained inside messages with the current values of its registers, can

store data in the registers or simply ignore some of the fields in the message payload.

Let us first describe the set of actions. We use r ≥ 0 and f ≥ 0 to denote resp. the

number of registers in each node and the number of data fields available in each message

and consider a finite alphabet Σ of message types.
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The set of actions A is defined as follows. Local actions are defined by labels l(m) where

m ∈ Σ. Send actions are defined by labels s(m, p), where m ∈ Σ, p = p1, . . . , pf and

pi ∈ [1..r] for i ∈ [1..f ]. The action s(m, p) corresponds to a message or remote procedure

call of type m whose i-th field contains the value of the register pi of the sending node. For

instance, in s(req, 1, 1) the current value of the register 1 of the sender is copied in the first

two fields of the message.

The set of field actions Opr is defined as {?k, ↓k, ∗ | k ∈ [1..r]}. When used at position

i of a reception action, ?k tests whether the content of the k-th register is equal to the i-th

field of the message, ↓k is used to store the field into the k-th register, and ∗ is used to ignore

the field. Reception actions are defined by labels r(m,α), α = α1, . . . , αf , where m ∈ Σ,

αi ∈ Opr for i ∈ [1..f ].

As an example, for r = 2 and f = 3, r(req, ?2, ∗, ↓1) specifies the reception of a message

of type req in which the first field is tested for equality against the current value of the second

register, the second field is ignored, and the third field is assigned to the first register.

◮ Definition 1. A process definition over Σ is a tuple D̆ = 〈Q,R, q0〉 where: Q is a finite

set of control states, q0 ∈ Q is an initial control state, and R ⊆ Q× A ×Q.

We use D = {D1, . . . ,Dn} to denote a set of process definitions such thatDi = 〈Qi, Ri, q
i
0〉,

and Q = Q1 ∪ . . . ∪ Qn ∪ {error} to denote the set of all control states. We assume here

that Qi ∩Qj = ∅ and that error 6∈ Qi for all i, j.

In the rest of the paper, we will use definitions as process types, i.e., we will say that a

process has type D if its behaviour is defined by the automata D.

◮ Definition 2. Process Definitions with Permissions (PDP) are defined by a graph G =

(D,⇀), where D is a set of process definitions, and ⇀⊆ D × D is a set of permission edges.

D1 ⇀ D2 is used to denote 〈D1,D2〉 ∈⇀.

The permission graph defines a dependency relation between process definitions. Namely,

if D1 ⇀ D2, then a process of type D1 has the permission to use services provided by a

process of type D2.

2.1 Operational Semantics

We now move to the definition of an operational semantics for our model. First of all, values

of registers are taken from a denumerable set of identifiers Id. A configuration γ is a tuple

〈V,L〉, where V = {n1, . . . , nk} is a set of process instances for k ≥ 0, L : V → D × Q × Idr

is a labeling function that associates a definition, a control state (taken from the union of

control states of all definitions), and values to registers of each process. We use Γ to denote

the infinite set of all configurations (the set is infinite since it contains configurations with

any number of process instances).

Terminology For a process v ∈ V , we denote by LD(v), LQ(v) and LM (v) the three

projections of L(v). With an abuse of a notation, we use the same notation to extract the

projections relative to a given node v from a configuration γ, i.e., LD(γ, v) = LD(v) is the

definition (or type) associated to node v in γ; LQ(γ, v) = LQ(v) is the current state of node v

in γ; and LM (γ, v, i) = LM (v)[i] is the current value of register i of node v in γ. Finally, the

configuration γ is said to be initial if (1) all nodes are in their initial control states, i.e., for

all v ∈ V , LQ(v) = q0 if LD(v) = 〈Q,R, q0〉; (2) for all nodes, all registers contain different

values, i.e., for all u, v ∈ V and all i, j ∈ [1..r], if u 6= v or i 6= j then LM (v)[i] 6= LM (v)[j].

We use Γ0 ⊆ Γ to denote the infinite subset of initial configurations.
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For a configuration γ = 〈V,L〉, u, v ∈ V , p = p1, . . . , pf and an action A = s(m, p),

let S(v, u,A) ⊆ Q × Idr be the set of the possible labels that can take u on reception

of the message m sent by v, i.e., we have (q′,M) ∈ S(v, u,A), where M is an r-tuple of

identifiers, if and only if there exists a receive action of the form 〈LQ(u), r(m,α), q′〉 where

α = α1, . . . , αf verifying the following condition: For all i ∈ [1..f ], (1) if αi = ?j, then

LM (u)[j] = LM (v)[pi]; (2) if αi = ↓j then M [j] = LM (v)[pi], otherwise M [j] = LM (u)[j].

Given G = 〈D,⇀〉, we define the transition system TSG = 〈Γ,⇒〉, where ⇒⊆ Γ × Γ.

Specifically, for γ = 〈V,L〉 and γ′ = 〈V,L′〉 ∈ Γ, A = s(m, p) we have γ ⇒ γ′ if and only if

(1) for all u ∈ V , LD(γ′, u) = LD(γ, u), and (2) one of the following conditions holds:

there exist u, v ∈ V u 6= v s.t. 〈LQ(γ, v), A, LQ(γ′, v)〉 ∈ R, LM (γ′, v) = LM (γ, v)

〈LQ(γ′, u), LM (γ′, u)〉 ∈ S(v, u,A), LD(γ, v) ⇀ LD(γ, u), LQ(γ′, u′) = LQ(γ, u′) and

LM (γ′, u′) = LM (γ, u′) for u′ ∈ V s.t. u′ 6= u, v.

there exist v, u ∈ V v 6= u, q1, q2 ∈ Q, and M ∈ Idr s.t. 〈LQ(γ, v), A, q1〉 ∈ R, 〈q2,M〉 ∈

S(v, u,A), LD(γ, v) 6⇀ LD(γ, u), LQ(γ′, v) = error, LM (γ′, v) = LM (γ, v), LQ(γ′, u′) =

LQ(γ, u′), LM (γ′, u′) = LM (γ, u′), for u′ ∈ V (including u) s.t. u′ 6= u.

there exist v ∈ V , 〈LQ(γ, v), l(a), LQ(γ′, v)〉 ∈ R and LQ(γ′, u) = LQ(γ, u), LM (γ′, u) =

LM (γ, u) for u ∈ V s.t. u 6= v.

We use
∗

⇒ to denote the reflexive and transitive closure of ⇒.

Finally, given G = 〈D,⇀〉 with TSG = 〈Γ,⇒〉, the set of reachable configurations is

defined as follows: Reach(G) = {γ ∈ Γ | ∃γ0 ∈ Γ0 s.t. γ0
∗

⇒ γ}. We observe that the

number of nodes in V does not change during a computation, i.e., all successors of a given

configuration γ0 have the same set of nodes V . However, assuming that D 6= ∅, the set of

initial configuration Γ0 is infinite by construction and contains all possible combinations (of

any number) of instances of process with types in D. Therefore, Reach(G) is always infinite

when D 6= ∅.

Detection of Permission Violations

Given a PDP G = 〈D,⇀〉, our goal is to decide whether there exists an initial configuration

containing any number of process instances of any type from which it is possible to reach a

configuration exposing a permission violation, i.e., containing a process with error control

state. The formal definition of the decision problem is given below.

◮ Definition 3. Given a PDP G = 〈D,⇀〉 s.t. D 6= ∅, with TSG = 〈Γ,⇒〉, the problem

VD(r, f) is defined as follows: ∃γ ∈ Reach(G) with nodes in V and ∃v ∈ V such that

LQ(γ, v) = error?

As remarked in the previous section, Γ0 is an infinite set of configurations. Hence for fixed r, f

VD(r, f) cannot be solved directly by using a reduction to a finite-state system. Intuitively,

we need to guess an adequate number of processes in the initial configuration to expose a

violation. We will show that in general this is not possible in algorithmic way.

Data Tracking

We are also interested in tracking data exchanged by different processes during a computation

and data can generate violations of permissions that are invisible to the ⇀ dependency

relation. More specifically, we first introduce a symmetric relation  ⊆ D × D to specify (a

priori) potential conflicts between permissions associated to process types (i.e. definitions in

D). We now consider the extended model PDP with conflicts (PDPC), defined as G = 〈D,⇀
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Figure 2 Process of type C: we use op1 and op2 to denote messages needed for completing an

entire simulation step of instruction op; op is a label in {incN, zeroN, nzeroN, decN} for a counter

N , .

r(e1, ↓2) r(e2, ?2)

Figure 3 Component of type E.

, 〉. For instance, if processes of type D1,D2 can access internet services and processes of

type D3 cannot, then we assume that D1 D3 and D2 D3.

We now move to the second decision problem that we consider in the paper.

◮ Definition 4. Given PDPC G = 〈D,⇀, 〉 with TSG = 〈Γ,⇒〉, the problem CD(r, f) is

defined as follows: ∃γ1, γ2 ∈ Reach(G) with nodes in V , ∃u, v ∈ V , and ∃ registers i, j such

that γ1
∗

⇒ γ2, LM (γ1, u, i) = LM (γ2, v, j), and LD(γ1, u) LD(γ2, v)?

Finally, we say that a PDP [resp. a PDPC] is violation-free [resp. conflict-free] if and only

if there are no violations of the above mentioned types. As for VD, in the CD decision

problem there are no restrictions a priori on the number of component instances in the

initial configuration. From a computational perspective, this feature is a major obstacle for

algorithmic solutions to the problem.

3 Violation Detection

In this section we prove that violation detection is undecidable for r ≥ 2, f = 1. This

property is due to the special parameterized formulation of the problem. The possibility

of choosing an initial configuration of arbitrary size can be exploited to set up a network

configuration in which a special node plays the role of controller linked to a finite but

arbitrary sequence of nodes that encode unitary elements of a memory (e.g. a counter or

the tape of a Turing machine). Elements of the memory are linked via identifiers stored

in registers. By setting up a specific set of process definitions and an adequate permission

relation, it is possible to reduce the halting problem of a counter machine to violation

detection. The statement is proved formally in the rest of the section.

◮ Theorem 5. The VD(2, 1) problem is undecidable.

We exhibit a reduction from the termination problem for two counter machines. Counter

machines are sequential programs that manipulate a finite set of counters with values

over natural numbers. We consider here instructions such as inci, deci, if zeroi gotoj ,

if notzeroi gotoj for i ∈ [1, . . . , r] (number of counters) and j ∈ [1 . . . k] (instructions) and
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Figure 4 Process of type U .

programs P with instructions I1, . . . , Ik. For the encoding, we need process definitions C,

U and E whose permission graph is as follows: C ⇀ U,U ⇀ C,C ⇀ E. An instance IC of

process definition C is used to keep track of the current instruction of P (program counter).

Furthermore, in the initialization phase IC has the following tasks: synchronization with

a process of type E used in the last step of the simulation, construction of a linked list,

connected to IC whose elements are instances of type U . Processes of type C and U have

two registers, id and next for simplicity. Register id is used as identifier of each process

instance. Register next is used as pointer to the first/next process instance (the next cell in

the list). Instances of type U simulate the unit of a counter ci, its state denotes a zero or

one value for ci. The types of the elements in the list are chosen non-deterministically. In

other words we represent the current values of all counters in a single list.

To create a list of finite but arbitrary length, we just need to first propagate a request

message through U cells. U cells can non-deterministically decide to stop propagation and

return their identifier to a process of type C. In this phase, upon reception, a process

instance stores the identifier in the second register, the “next pointer" and sends its own

identifier to another instance. Several lists can be constructed in parallel starting from

different initial states. The acknowledgment phases is then needed to build a well formed

list in which each node has the identifier of the next cell. Observe that, due to the non-
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Figure 5 Example of list construction in which the second phase is used to fix the “next" pointers.

determinism of rendez-vous, a well formed lists can have elements taken from other lists

constructed in the first phase. An alternative algorithm can be obtained by constructing

a list backwards, i.e., propagating the “next pointer" sending id to a node that directly

stores in its second register. We adopt the first algorithm so as to use process of type C as

initiator and coordinator of all the phases and to show the power of data to isolate special

topologies in a fully connected set of processes. When the list is ready, IC synchronizes, via

handshaking, with one instance IE of a process of type E. The simulation of the program

P can now start. The list denotes value k for counter ci if it contains k instances of process

U with an internal state that encode a single unit for the counter ci. Process U is such

that, upon reception of an operation request, it can either execute it locally (e.g. increment

of a zero cell) or forward the request to the next cell and wait for an answer (in state w).

Simulation of an increment on counter Ci propagates the request to set to one the internal

state of a cell of type ci with value zero in the list. Simulation of a decrement on counter

Ci propagates the request to set to zero the internal state of a cell of type ci with value one

in the list. Simulation of a zero-test on counter Ci propagates the test on on the value of

the cell to the whole list. An acknowledgment is sent back to the sender if all cells are zero.

For a non-zero test the first non-zero cell sends an acknowledgement back to the sender.

The last phase of the simulation starts when the simulation of the counter machine

terminates, i.e., IC has a control state that corresponds to the halt location of P . IC then

sends a special request pv to the first U cell in the list. Upon reception of the pv request,

the cell tries to call an action of the IE instance, generating a permission violation. The

definition of process C, E and U are given in Fig. 2, 3, and 4, respectively.

By construction, the counter machine P terminates if and only if there exists an initial

configuration from which we can generate a configuration with well-formed lists, and enough

memory cells, that can simulate a complete execution of the program P . Formally, P reaches

location ℓf if an only if there exists an initial configuration γ0 s.t. γ0 ⇒∗ γ1 and LQ(γ1, u) =

ℓf for some node u. From the previous property and following from the interaction between

C and E processes, it follows that P reaches location ℓf if and only if there exists an initial

configuration γ0 s.t. γ0 ⇒∗ γ1 and LQ(γ1, u) = error for some node u. Therefore halting of

P is reduced to violation detection in the application D = 〈C,E,U〉.

When processes do not exchange data, i.e., r = 0 or f = 0, it is possible to decide

violation detection by using algorithms for deciding the coverability problem in Petri Nets

(see appendix for main definitions). Formally, the following property holds.

◮ Theorem 6. The VD(r, f) problem is decidable if either r = 0 or f = 0.

Proof. Let D = {C1, . . . , Cn} with Ci = 〈Qi,Σi, δi, q
i
0〉 for i : 1, . . . , n. The reduction is

defined as follows. The set P of places is defined as P = {err} ∪ (
⋃n

i=1 Qi). The transitions
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are defined as follows. For i ∈ {n} and every rule r = 〈q, a, q′〉 ∈ δi, we define a transition

tr = 〈Pre, Post〉 s.t. Pre = {q} and Post = {q′}. For i, j ∈ {n} and every pair of

rules r1 = 〈q1, s(a), q′
1〉 ∈ δi, r2 = 〈q2, r(a), q′

2〉 ∈ δj s.t. Ci ⇀ Cj , we define a transition

tr = 〈Pre, Post〉 s.t. Pre = {q1, q2} and Post = {q′
1, q

′
2}. For i, j ∈ {n} and every pair of

rules r1 = 〈q1, s(a), q′
1〉 ∈ δi, r2 = 〈q2, r(a), q′

2〉 ∈ δj s.t. Ci 6⇀ Cj , we define a transition

tr = 〈Pre, Post〉 s.t. Pre = {q1, q2} and Post = {err, q2}.

Given a configuration γ = 〈q1, . . . , qn〉 we define the associated marking Mγ that contains

as many occurrences of state q as those in γ. By construction of our reduction, we obtain that

γ0 reaches configuration γ1 iff Mγ0
⊲ Mγ1

. To represent an arbitrary initial configuration,

we add a transition that non-deterministically adds token to places that represent initial

states of processes. Furthermore, to separate initialization and normal operations we can

simply use and additional place ok and use it to block process interactions during the

initialization phase. Namely, iti = 〈Pre, Post〉 s.t. Pre = {init} and Post = {init, qi
0}

for any i. Furthermore, iti+1 = 〈Pre, Post〉 s.t. Pre = {init} and Post = {ok}. All the

other rules are modified in order to add ok to their pre-set. As a corollary, we have that the

safety property holds for D iff coverability holds for the Petri net P and the two markings

Mγ0
= {init} and Merr = {e}. Following from properties of Petri Nets, we obtain that the

safety problem is decidable for VD(0, 0). ◭

In the rest of the paper we will focus our attention on conflict detection and derive other

decidability results for violation detection as a side-effect of more general results obtained

for processes and messages with data.

4 Conflict Detection

In this section we move to the analysis of the conflict detection problem. We first observe

that conflict detection is undecidable for r > 1. The proof is similar to the encoding of

counter machines used for the undecidability of violation detection. Instead of generating a

permission violation as a last step of the simulation the controller C sends its identifier to a

special process of type D s.t. C and D are in conflict. This way, a conflict is detected starting

from some initial configuration if and only if the counter machine program terminates. We

show that both violation and conflict detection are decidable for r = f = 1.

The decidability proof consists of two steps. We first extend the transition system of a

PDPC by adding a sort of external memory in which to keep track of footprints of identifiers.

Footprints are represented via a collection of predicates that mark all types of processes

in which an identifier has been stored. It is important to remark that footprints share

data with current configurations, i.e., the alphabet used to define footprints is infinite as

for configurations. To deal with the conflict detection problem, we may need infinite set

of footprints since the problem is parametric in the initial configuration. By extending

the transition relation with historical information we can reduce conflict detection to a

reachability problem formulated over the predicates in the history. It is important to notice

that for this kind of problem we just need a monotonically increasing external memory. The

second step of the proof consists in reducing the reachability problem for the transition

system with history to coverability in a formalism called MSR(C) that is a special class

of multiset rewriting with constraints. The desired result follows then by observing that,

for r = 1, the resulting encoding produces only rewriting rules with monadic predicates.

We can then apply the decision procedure based on the theory of well-structured transition

systems defined in [11] to solve algorithmically the CD problem. We start from defining the

extended operational semantics.
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4.1 Transition System with History

Given D, let us consider the set of unary predicates PD = {hC |C ∈ D}. We use the formula

hC(id) to denote a footprint for the identifier id ∈ Id. Let FD = {hC(id)|id ∈ Id, hC ∈ P}

be the set of all footprints associated to D. We use HD to denote all possible multisets of

footprints in FD, i.e., HD = F⊕
D . For a configuration γ, let fp(γ) be the multiset of footprints

such that hC(id) ∈ fp(γ) iff the identifier id occurs in some register of a process of type

C in γ. As an example, for γ with nodes n1, n2, n3 of type A,B,C with values in the two

registers resp. (1, 2), (2, 3), and (3, 4), fp(γ) = {hA(1), hA(2), hB(2), hB(3), hC(3), hC(4)}.

Extended configurations are tuples of the form γ[h], where γ is a configuration and

h ∈ HD. An initial configuration is defined then as γ0[h0], where h0 = fp(γ0), i.e., h0

contains the footprints for each identifier in γ0.

The extended transition relation ⇒h⊆ Γ ×HD is built on top of ⇒ as follows:

γ[h] ⇒h γ
′[h] if γ ⇒ γ′ via an application of a local rule;

γ[h] ⇒h γ
′[h⊕ fps(γ′)] if γ ⇒ γ′ via an application of a rendez-vous step, where fps(γ′)

is the multiset of footprints in fp(γ′) generated by store operations after a reception, i.e.,

hC(id) ∈ fps(γ′) iff hC(id) ∈ fp(γ′) and id is stored in a register of a process of type C

during the rendez-vous, for some C and identifier id.

We use
∗

⇒h to denote the reflexive and transitive closure of ⇒h.

The CD problem can now be formulated by considering the history of a computation.

Namely, CD amounts to checking whether there exists an initial configuration γ0[h0] (of

arbitrary shape) from which it is possible to reach a configuration γ[h] such that h contains

at least two footprints hC(i) and hD(i) for some process type C,D s.t. C D . It is important

to observe that we just need unary predicates to represent footprints for identifiers.

4.2 Encoding into MSR(Id)

An encoding of the problem into coverability of a model inspired by Petri nets with identi-

fiers called MSR(C) in which the constraint system consists of equalities. In the encoding

we model both the behavior of an application as well as footprints of data exchanged by

instances of processes. Footprints are represented via monadic predicates. Each predicate

keeps track of the history of a given identifier during its lifetime, namely every type of

process in which the identifier has been stored during execution. The history can then be

queried in search for conflicts. MSR(C) is a formal model for concurrent systems based on a

combination of rewriting and constraints. A constraint system C is defined by formulas with

free variables in V , an interpretation domain D, and a satisfiability relation |= for formulas

in C interpreted over D. We use D |=σ ϕ to denote satisfiability of ϕ via a substitution

σ : V ar(ϕ) → D, where V ar(ϕ) is the set of free variables in ϕ. For a fixed set of pre-

dicates P , an atomic formula with variables has the form p(x1, . . . , xn) where p ∈ P and

x1, . . . , xn ∈ V . A rewriting rule has the form M → M ′ : ϕ, where M and M ′ are multiset

of atomic formulas with variables over P and V , and ϕ is a constraint formula over variables

V ar(M ⊕M ′) occurring in M ⊕M ′. We use M = A1, . . . , An to denote a multiset of atoms.

MSR(Id) is the instance obtained by considering the constraint system Id defined as

follows. Constraint formulas are defined by the grammar ϕ ::= ϕ1, ϕ2|x = y|x < y for vari-

ables x, y ∈ V . Here ϕ1, ϕ2 denotes a conjunction of formulas ϕ1 and ϕ2. The interpretation

domain is defined over an infinite and ordered set of identifiers 〈Id,=, <〉. For substitution

σ : V → Id, x = y is interpreted as σ(x) = σ(y), x < y is interpreted as σ(x) < σ(y), and

ϕ1, ϕ2 is interpreted as σ(ϕ1) ∧σ(ϕ2). A constraint ϕ is satisfied by a substitution σ if σ(ϕ)

evaluates to true. An instance Mσ → M ′σ of a rule M → M ′ : ϕ is defined by taking a
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substitution σ : V ar(M ⊕M ′) → Id such that σ(ϕ) is satisfied in the interpretation Id.

As an example, consider the rule p(x, y), q(x) → p(x, y), q(x), q(u) : x < u The intuition

is that processes p(x, y) and q(z) synchronize when x = z and generate a new instance q(u)

with x < u. By associating natural numbers to identifiers, p(1, 2), q(1) → p(1, 2), q(1), q(4)

and p(3, 10), q(3) → p(3, 10), q(3), q(8) are two instances of the considered rule. We use

Inst(∆) to indicate the infinite set of instances of a set ∆ of MSR rules.

A configuration is a multiset N of atoms of the form p(d1, . . . , dn) with di ∈ Id for

i : 1, . . . , n. For a set ∆ of rules and a configuration N , a rewriting step is defined by the

relation ⊲ s.t. N = (M ⊕Q) ⊲ (M ′ ⊕Q) = N ′ for (M → M ′) ∈ Inst(∆). A computation is

a sequence of configurations N1 . . . Nm . . . s.t. Ni ⊲ Ni+1 for i ≥ 0. For a set of rules ∆, an

initial configuration N0, and a zerary predicate pf , the coverability problem, COV, consists

in checking whether there exists a computation from N0 to a configuration N1 s.t. pf ∈ N1.

We now encode the CD(r, f) problem as a coverability instance in monadic MSR(Id).

Let D = {C1, . . . , Cn} with Ci = 〈Qi, Ri, q
i
0〉 for i : 1, . . . , n. We define the set P =

{init,max, ok} ∪ {hC |C ∈ D} ∪ (
⋃n

i=1 Qi) of monadic predicates. Predicates init and ok

are used to separate the initialization phase from the simulation steps. Predicates hC define

footprints for data. In order to represent an arbitrary initial configuration we define MSR(Id)

rules that non-deterministically add predicates with distinct identifiers. The rules are defined

as follows:

init → init,max(x) : true where max is used to generate fresh identifiers;

for each initial state q0 of process C ∈ D with x = x1, . . . , xn,

init,max(x) → init,max(y), q0(x), hC(x1), . . . , hC(xn) : y > x1 > x2 . . . xn > x

injects a node with initial state q0 and registers initialized to fresh values x1, . . . , xn. The

value stored in max is reset to a value greater than the last value seen so far.

The initialization is non-deterministically terminated by the rule init,max(x) → ok :

true. Inserting ok marks the beginning of the simulation phase.

The simulation of process rules is defined by the following rules.

Local For i ∈ {n} and every rule r = 〈q, l(a), q′〉 ∈ Ri, we define a rewriting rule

ok, q(x1, . . . , xn) → ok, q′(x′
1, . . . , x

′
n) : x′

1 = x1, . . . , x
′
n = xn

where x1, . . . , xn denote the current values of the registers, and q/q′ is the current/next

state.

Rendez-vous For i, j ∈ {n} and every pair of rules r1 = 〈q1, s(a, p1, . . . , pf ), q′
1〉 ∈ Ri, r2 =

〈q2, r(a, α1, . . . , αf ), q′
2〉 ∈ Rj s.t. q1 is the state of a process of type A, q2 is the state of a

process of type B, A ⇀ B, we define a rule

ok, q1(x1, . . . , xr), q2(y1, . . . , yr) → ok, q′
1(x′

1, . . . , x
′
r), q′

2(y′
1, . . . , y

′
r) ⊕Mf : ϕ

where ϕ is the constraint ϕ1, . . . , ϕf , ψ1, ψ2 defined as follows: for i : 1, . . . , f , if αi =?pj , then

ϕi is the equality yi = xj (each guard must be satisfied); if αi =↓ pj , then ϕi is the equality

y′
i = xj (assignment to register i) and Mf contains predicate hB(xj) encoding a footprint;

if αi = ∗, then ϕi = true. Furthermore, ψ = (∧r
i=1x

′
i = xi) ∧ (∧r

i=1,αi 6=↓k,k≥1y
′
i = yi) to

denote that values of registers remain unchanged unless modified by some store operations

in the receiver process.

Violation For i, j ∈ {n} and every pair of rules r1 = 〈q1, s(a, p1, . . . , pf ), q′
1〉 ∈ Ri, r2 =

〈q2, r(a, α1, . . . , αf ), q′
2〉 ∈ Rj s.t. q1 is the state of a process of type A, q2 is the state of a

process of type B, A 6⇀ B, we define a rule:

ok, q1(x1, . . . , xr), q2(y1, . . . , yr) → ok, err(x′
1, . . . , x

′
r), q′

2(y′
1, . . . , y

′
r) : ϕ
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where ϕ is the constraint ϕ1, . . . , ϕf , ψ defined as follows: for i : 1, . . . , f , if αi =?pj , then ϕi

is the equality yi = xj (each guard must be satisfied), if αi =↓ pj or αi = ∗, then ϕi = true;

Furthermore, ψ = ∧r
i=1x

′
i = xi, y

′
i = yi to denote that values of registers remain unchanged.

Finally, for each pair C D we define a rule hC(x), hD(x) → conflict to detect conflicts

over data that have been stored in incompatible processes. We show an example of encoding

(and analysis) of the model in Fig. 1 in Section 5 in appendix.

By construction of our reduction, we obtain that γ0[h0] reaches configuration γ[h] iff

init ⊲ Nγ ⊕ h, where Nγ is the multiset that contains ok, and, for each node u of type A in

γ, a formula q(v) where q = LQ(γ, u), and v = LM (γ, u).

In the above construction we use the monadic predicate hC(x) to maintain footprints

of identifier x received by an instance of a process of type C. The last rule is used to

detect conflicts between two footprints for the same identifier. Footprints work as records

of an infinite memory that associates to every identifier all processes visited during an

execution. We need here infinite memory since our decision problems consider any possible

initial configuration.

◮ Theorem 7. The CD(1, 1) problem is decidable.

Proof. For r = 1, the rewriting rules resulting from the encoding of the CD(1, 1) problem

into MSR(Id) consist of monadic predicates only. By construction, CD(1, 1) holds if and

only if from the MSR(Id) configuration init it is possible to reach a configuration N s.t.

conflict belongs to N . This is an instance of the coverability problem for MSR(Id) that is

decidable for monadic rewriting rules as shown in [11]. ◭

Besides decidability, the encoding can still be applied to obtain a possibly non termin-

ating procedure for solving conflict detection for r > 2. The procedure is based on the

symbolic backward reachability procedure for MSR(C) specifications described in [11].

◮ Theorem 8. The VD(1, 1) problem is decidable.

Proof. We use the same reduction to MSR(Id) used for conflict-detection and add rules of

the form err(x1, . . . , xn) → err : true to detect error states in individual processes. By

construction, it follows that VD(1, 1) holds if and only if from the configuration init we can

reach a configuration N s.t. err ∈ N . ◭

Our Example Let us first expand the encoding of the four compontents of Fig. 1 in

MSR(Id). Since each component is defined by send/receive operations only, the MSR(Id)

model consists of the following rewriting rules: c1(x), a1(y), ok → c1(x), a2(x), ha(x), ok :

true, a2(x), b1(y), ok → a3(x), b2(x), hb(x), ok : true, and b2(x), i1(y), ok → b3(x), i1(x), hi(x), ok :

true where c1 is the single state of process type C, a1, a2, a3 are the states of process type

A, b1, b2, a3 are the states of process type B, and i1 is the single state of process type

I. Initial configurations consists of nodes with distinct identifiers in their registers. They

can be generated by a finite set of MSR(Id) rules described in appendix. Finally, rule

hC(x), hI(x) → conflict : true specifies a conflict detection due to information leaking.

Checking for possible detection can be done by executing a symbolic backward exploration

that exploits constrained multisets like M = hC(x), hI(x) : true as a symbolic representation

of all possible configurations containing instance of M . The computation of predecessors

can be done symbolically. Termination of predecessor computation is guaranteed by the

well-structured property of monadic MSR(Id) proved in [11]. For the considered example,

we apply a CLP-based implementation of the engine. As a proof of concept, experimental

results on the considered example are given in appendix.
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5 Proof of Concept

Let us go back to the Example of Fig. 1. In order to detect violations without run-time

permission violations, we have to verify conflict detection for arbitrary initial configurations.

In our abstraction of activities, we just need one register for component used to store received

data. The content component contains an identifier associated to the device private data.

The problem can thus be decide via: (1) an encoding in MSR(Id); (2) by applying the

symbolic backward reachability algorithm defined in [10]. Let us first expand the encoding of

the four compontents of Fig. 1 in MSR(Id). Since each component is defined by send/receive

operations only, the MSR(Id) model consists of the following rewriting rules:

c1(x), a1(y), ok → c1(x), a2(x), ha(x), ok : true

a2(x), b1(y), ok → a3(x), b2(x), hb(x), ok : true

b2(x), i1(y), ok → b3(x), i1(x), hi(x), ok : true

where c1 is the single state of process type C, a1, a2, a3 are the states of process type A,

b1, b2, a3 are the states of process type B, and i1 is the single state of process type I.

Since we are interested in conflict detection, we omit here the rules that encode permission

violations (i.e. those leading to error states). The initial configuration is defined via the

following rules:
init → init,max(x) : true

init,max(x) → c1(x),max(y) : x < y

init,max(x) → a1(x),max(y) : x < y

init,max(x) → b1(x),max(y) : x < y

init,max(x) → i1(x),max(y) : x < y

init,max(x) → ok : true

Finally, the following rule specifies a conflict detection due to information leaking from the

content- to internet-component.

hc(x), hi(x) → conflict

Checking for possible detection can be done by executing a symbolic backward exploration

that exploits the constrained multiset hc(x), hi(x) : true as a symbolic representation of all

possible larger configurations containing instances of C. The computation of predecessors

is fully automated. Furthermore, termination is guaranteed by the well-structured property

of monadic MSR(Id) proved in [11].

For the considered example, we perform the following experiments. First of all, the

rewriting rules are represented in Prolog as the following set of facts.

rule([c1(X),a1(_)],[c1(X),a2(X),ha(X)],{},1).

rule([b1(_),a2(X)],[b2(X),a3(X),hb(X)],{},2).

rule([b2(X),i1(_)],[b3(X),i1(X),hi(X)],{},3).

We omit here the initialization phase to simplify the analysis (e.g. we can omit the ok predic-

ate). The seed of backward search is the fact f(0, [hc(A), hi(A)], {}, 1, 0, 0). A fact

f(i,m, c, n, r, f) denotes a multiset constraint m : c computed at step i of the analysis, with

order number n, obtained by applying rule r backwards to a non-deterministically chosen

submultiset of the multiset constraint contained in fact f . Each fact f(i,m, c, v1, v2, v3) is

a representation of an infinite set of configurations obtained by first taking an instantiation

m1 of the formula m : c and then by taking any multiset m′ = m1 ⊕ m2 for any multiset

m2.

The symbolic backward engine computes all predecessors in three steps:
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f(3, [c1(A),a1(_),b1(_),i1(_),hc(A)], {}, 4, 3, 1).

f(2, [b1(_),a2(A),i1(_),hc(A)], {}, 3, 2, 2).

f(1, [b2(A),i1(_),hc(A)], {}, 2, 1, 3).

f(0, [hc(A),hi(A)], {}, 1, 0, 0).

The constraint {} is equivalent to true. The symbol \_ corresponds to an anonymous free

variable. Initial configurations are contained in the resulting infinite set of configurations.

From the fixpoint, we can build a trace from an initial configuration to a conflict. We just

have to follow the history of the predecessor computation. Fact 4 is generated from fact

3 via rule 1. Fact 3 is generated from fact 2 via rule 2. Fact 2 is generated from fact 1

via rule 3. In the trace we can verify that an identifier can move from an instance of a

content component to an instance of an internet component yielding a violation that cannot

be detected by using the underlying permission model.

To avoid conflicts, we can modify the definition of the A and B processes so that the

start method is invoked without adding data in the intent. The resulting rules (in Prolog

notations) are as follows.

rule([c1(X),a1(_),,ok],[c1(X),a2(X),hc(X),ha(X),ok],{},1).

rule([b1(Z),a2(X),ok],[b2(Z),a3(X),ok],{},2).

rule([b2(X),i1(_),hp(X),ok],[p3(X),i1(X),hp(X),hi(X),ok],{},3).

In the second rule instances of A and B synchronize with no data exchange (each process

keeps the old value in its register). Via the analysis with backward search, we now get the

following fixpoint:

f(3, [c1(_),a1(_),ok,b1(A),i1(_),hc(A)], {}, 4, 3, 1).

f(2, [b1(A),a2(_),ok,i1(_),hc(A)], {}, 3, 2, 2).

f(1, [b2(A),i1(_),ok,hc(A)], {}, 2, 1, 3).

f(0, [hc(A),hi(A)], {}, 1, 0, 0).

Fact 3 has only instances in initial states (c1, a1, p1, i1) thus is candidate to contain

denotations of initial configurations. However in fact 3, b1 of type B has an identifier

shared with footprint hc associated to type C. By definition, in initial configurations each

identifier has the type associated to process in which it is stored. Thus, no instance of the

pattern represented by fact 3 can be an initial state. Namely, any multiset m ⊕ m′ s.t. m

is an instances of [c1(_),a1(_),ok,p1(A),i1(_),hc(A)] cannot be an initial state. The

same holds for fact 0, its denotation cannot contain initial configurations (it is not possible

that the same identifier belongs to different footprints in an initial configuration). Since

symbolic backward reachability generates all symbolic predecessors of upward closed sets of

configurations, the fixpoint is a proof that the modified model is conflict-free for any number

of nodes in initial configurations.

The encoding can be extended to process with multiple data fields. As an example,

consider processes with two registers: identifier and data. Processes have now the following

rewriting rules:

c1(id, x), a1(id1, y), ok → c1(id, x), a2(id1, x), ha(x), ok : true

a2(id, x), b1(id1, y), ok → a3(id, x), b2(id1, x), hb(x), ok : true

b2(id, x), i1(id1, y), ok → b3(id, x), i1(id1, x), hi(x), ok : true

We remark that the footprints are still defined by monadic predicates. Backward search can

still be applied.
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6 Conclusions and Related Work

We have presented a framework for reasoning about abstract models of concurrent systems

in which interaction is regulated by a statically defined permission model. In this setting

we have studied computational issues of two fundamental problems: detecting permission

violations and conflicts due to value passing. The problems are formulated in sucha a

way to capture properties for concurrent systems with an arbitrary number of components.

Our model is inspired by the automata-based model of distributed systems proposed in

[14, 15, 13] to study of robustness of broadcast communication in unreliable networks with

different types of topology and different types of dynamic reconfigurations. Verification of

broadcast protocols in fully connected networks in which nodes and messages range over a

finite set of states has been considered, e.g., in [16, 18, 4, 17, 24]. Differently from the above

mentioned works, the focus of the present paper is the analysis of process interaction, via

rendez-vous and value passing, controlled by permission models and of its interplay with data.

Parameterized verification of provenance in distributed applications has been considered in

[20] where regular languages are used as a formal tool to symbolically analyze the provenance

of messages taken from a finite alphabet. In the present paper we consider messages from an

infinite alphabet and use transition systems with histories that share information in common

with the current state. The use of predicates to observe the history of data shares similarities

with approaches based on the use of policy automata and type systems. Type systems have

been defined in abstract languages that model Android applications in [2, 9] based on the

history expressions introduced in [5, 6]. Policy automata are automata with management

of names that can be used to specify policies for accessing resources. They can be analyzed

by using model checking algorithms for BPAs [7]. Concerning validation of updates of

access control policies, parameterized reasoning via constraint and SMT solvers has been

considered, e.g., in [25, 3, 21, 22]. Register Automata and History-Register Automata have

also been used to model programs with dynamic allocation in [26, 27]. To our knowledge, the

use of history predicates that share information with the current state and the application

of well-structured transition systems to verify data tracking in parameterized concurrent

systems are two novel ideas. From a technical point of view, our results are obtained via

reductions to low level concurrency models like Petri nets and rewriting systems in which

it is possible to manipulate data taken from an infinite ordered domain of identifiers like

MSR(Id) [8, 11, 1]. MSR(Id) is also strictly related to ν-nets [23] that provide fresh name

generation and equality constraints. The relation between MSR(Id) and ν-nets is studied

in [12]. As shown in [1], the MSR(Id) model is strictly more expressive than Petri Nets and

it has the same expressive power of Datanets [19], an extension of Petri Nets with ordered

data.
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