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——— Abstract

Variants of the must testing approach have been successfully applied in Service Oriented Com-
puting for analysing the compliance between (contracts exposed by) clients and servers or, more
generally, between two peers. It has however been argued that multiparty scenarios call for
more permissive notions of compliance because partners usually do not have full coordination
capabilities. We propose two new testing preorders, which are obtained by restricting the set of
potential observers. For the first preorder, called uncoordinated, we allow only sets of parallel
observers that use different parts of the interface of a given service and have no possibility of in-
tercommunication. For the second preorder, that we call independent, we instead rely on parallel
observers that perceive as silent all the actions that are not in the interface of interest. We have
that the uncoordinated preorder is coarser than the classical must testing preorder and finer than
the independent one. We also provide a characterisation in terms of decorated traces for both
preorders: the uncoordinated preorder is defined in terms of must-sets and Mazurkiewicz traces
while the independent one is described in terms of classes of filtered traces that only contain
designated visible actions and must-sets.

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

A desired property of communication-centered systems is the graceful termination of the
partners involved in a multiparty interaction, i.e., every possible interaction among a set of
communicating partners ends successfully, in the sense that there are no messages waiting
forever to be sent, or sent messages which are never received. The theories of session types
[16, 8] and of contracts [5, 6, 3, 9] are commonly used to ensure such kind of properties. The
key idea behind both approaches is to associate to each process a type (or contract) that
gives an abstract description of its external, visible behavior and to use type checking to
verify correctness of behaviours.

Services are often specified by sequential nondeterministic cCS processes [12] describing
the communications offered by peers, built-up from invoke and accept activities, which are
abstractly represented as input and output actions that take place over a set of channels or
names, and internal 7 actions. Basic actions can be composed sequentially (prefix operator
“7) or as alternatives (non deterministic choice “4”). Moreover, the language for describing
services does not provide any operator for parallel composition. It is assumed that all possible
interleavings are made explicit in the description of the service and communication is used
only for modelling the interaction among different peers.

Services come equipped with a notion of compliance that characterises all valid clients of
a service, i.e., those clients that are guaranteed to terminate after any possible interaction
with the service. Compliance has been characterized by using a suitable variant of the must
testing approach [7], which allows comparing processes according to the ability of the external
observers to distinguishing them. Processes that are must-equivalent are characterized by
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the set of tests or observers that they are able to pass: any observer is defined as a unique
process that runs in parallel with the tested service and, consequently, all interactions with
the observed service are handled by a unique, central process, i.e. the observer. Technically,
two given processes p and ¢ are related via the must preorder (p Cust q) if ¢ passes all tests
that are passed by p. Consequently, p and ¢ are considered equivalent (p ~must ¢) if they
pass exactly the same tests.

If one considers a multiparty setting, each service may interact with several partners
and its interface is often (logically) partitioned by allowing each partner to communicate
only through dedicated parts of the interface. In many cases, the peers of a specific service
do not communicate with each other. In these situations, the classical testing approach to
process equivalences or preorders turns out to be too demanding. Consider the following
scenario involving three partners: an organisation (the broker) that sells goods produced by
a different company (the producer) to a specific customer (the client). The behaviour of the
broker can be described with the following process:

B = req.order.inv.

The broker accepts requests on channel req and then places an order to the producer with the
message order and sends an invoice to the customer with the message inv. In this scenario,
the broker uses the channels req and inv to interact with the customer, while the interaction
with the producer is over the channel order. Moreover, the customer and the producer do
not know each other and are completely independent. Hence, the order in which messages
order and inv are sent is completely irrelevant for them. They would be equally happy with
a broker defined as follows:
B’ = req.inv.order.

Nevertheless, these two different implementations are not considered must-equivalent.

The main goal of this paper is to introduce alternative, less discriminating, preorders
that take into account the distributed nature of the peers and thus the limited coordination
and interaction capabilities of the different players. A first preorder, called uncoordinated
must preorder, is obtained by assuming that all clients of a given service do interact with it
via disjoint sets of ports, i.e. they use different parts of its interface, have no possibility of
intercommunication, and all of them terminate successfully in every possible interaction. Even
though there is no intercommunication among clients, there is still some inter-dependency
among them, e.g. because one client refuses to interact in a way required for another. In this
way, it is possible to differentiate B from B’ above when the observer refuses to synchronise
over the port order. We introduce then a second preorder, that we call independent must
preorder, which ignores possible inter-dependencies among clients actions and, thanks to the
more limited discriminating power, guarantees increased acceptability of offered services.

The two preorders are as usual defined in terms of the outcomes of experiments by
specific sets of observers. For defining the uncoordinated must preorder, we allow only sets of
parallel observers that cannot intercommunicate and do challenge services via disjoint parts
of their interface. For defining the independent must preorder, we instead rely on parallel
observers that, again, cannot intercommunicate but in addition perceive as silent all the
actions that are not in the interface of their interest. This is instrumental to avoid that a
specific client recovers information about the other involved clients. As expected, we have
that the uncoordinated preorder is coarser than the classical must testing preorder and finer
than the independent one.

Just like for classical testing preorders, we provide a characterisation for both new
preorders in terms of decorated traces, which avoids dealing with universal quantifications over
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the set of observers whenever a specific relation between two processes has to be established.
The alternative characterizations make it even more evident that our preorders permit action
reordering. Indeed, the uncoordinated preorder is defined in terms of Mazurkiewicz traces
[11] while the independent one is described in terms of classes of traces quotiented via
specific sets of visible actions. We would like to remark that our two preorders are different
from those defined in [4, 14, 13], which also permit action reordering by relying on buffered
communication. Additional details will be provided in §6.

Synopsis The remainder of this paper is organised as follows. In §2 we recall the basics
of the classical must testing approach. In §3 and §4 we present the theory of uncoordinated
and independent must testing preorders and their characterisation in terms of traces. In §5
we show that the uncoordinated preorder is coarser than the must testing preorder but finer
than the independent one. Finally, we discuss some related work and future developments in

§6.

2 Processes and testing preorders

Let N be a countable set of action names, ranged over by a,b,.... As usual, we write
co-names in N as @,b, ... and assume @ = a. We will use o, 3 to range over Act = (N UN).
Moreover, we consider a distinguished internal action 7 not in Act and use p to range over
ActU{7}. We fix the language of defining services as the sequential fragment of CCS extended
with a success operator, as specified by the following grammar.

p,q:=0|1|pup|p+q|X|recx.p

The process 0 stands for the terminated process, 1 for the process that reports success and
then terminates, and p.p for a service that executes p and then continues as p. Alternative
behaviours are specified by terms of the form p + ¢, while recursive ones are introduced by
terms like recx.p. We sometimes omit trailing 0 and write, e.g., a.b+ ¢ instead of a.b.0 + c.0.
We write n(p) for the set of names a € A such that either a or @ occur in p.

The operational semantics of processes is given in terms of a labelled transition system

(LTs) p EN g with A € ActU{r, v'}, where v signals the successful termination of an execution.

» Definition 1 (Transition relation). The transition relation on processes, noted i>, is the
least relation satisfying the following rules

A A A
p=p qa=q plrecx.p/X] = p/

v Iz
1—0 up—p S N S
p+q—p p+qg—q recx.p —p

<

Multiparty applications, named configurations, are built by composing processes concur-
rently. Formally, configurations are given by the following grammar.

e,d=p|cld

We sometimes write Il;cq. ., p; for the parallel composition pg || ... || pn. The operational
semantics of configurations, which accounts for the communication between peers, is obtained
by extending the LTS in Definition 1 with the following rules:

et d& d e dSd cLd d5d
clldB e | d clldS el d clld>c | d c||di>c’||d’
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All rules are standard apart for the last one that is not present in [7]. This rule states
that the concurrent composition of processes can report success only when all processes in
the composition do so.

We write ¢ 2 when there exists ¢ s.t. ¢ = ¢/ ; = for the reflexive and transitive closure
of 5 c =2 ¢ for A € ActU {v'} andczi>:>; ¢ N2 ¢ for ¢ 22 ...gc’, and ¢ ==
with s € (ActU {v'})* if there exists ¢/ s.t. ¢ == ¢/. We write str(c) and init(c) to denote the
sets of strings and enabled actions of ¢, defined as follows

str(c) = {s € (Act U{v'})* | c ==} init(c) = {A € Act U {v'} | c =}

As behavioural semantics, we will consider the must-testing preorder [7]. We take all
possible configurations as the set O of observers, ranged over by o, 0q,...,0,.... If we do
only allow observers to report success and use only sequential observers we recover the
standard framework of [7].

» Definition 2 (must). A sequence of transitions po || 0 — ... = pi || o — ... is a
maximal computation if either it is infinite or the last term p,, || o, is such that p,, || 0, 7.
Let p must o iff for each maximal computation p || 0 =pg || 09 — ... — pr || ox — ... there

exists n > 0 such that o, L> <

We say that a computation ¢, Lo, . C NN LN Cn+1 is unsuccessful when c; 7L> for
all 0 < j <n+1, we say it successful otherwise.

The notion of passing a test represents the fact that a configuration, i.e., a set of partners,
is able to successfully terminate every possible interaction with the process under test. Then,
it is natural to compare processes accordingly to their capacity to satisfy partners.

» Definition 3 (must preorder). p Coust ¢ iff Yo € O : p must o implies ¢ must 0. We write
D ~must ¢ When both p Enust ¢ and g Epust D- <

2.1 Semantic characterisation

The must testing preorder has been characterised in [7] in terms of the sequences of actions
that a process may perform and the possible sets of actions that it may perform after
executing a particular sequence of actions. This characterisation relies on a few auxiliary
predicates and functions that are presented below. A process p diverges, written p {}, when it
exhibits an infinite, internal computation p = py — p1 — .... We say p converges, written
p |}, otherwise. For s € Act®, the convergence predicate is inductively defined by the following
rules:

pleifpl.

pl a.sifpl and p == p’ implies p’ || s.

The residual of a process p (or a set of processes P) after the execution of s € Act” is
given by the following equations

(p after s) = {p' | p == '}

(P after s) = U, p(p after s).

» Definition 4 (Must-set). A must-set of process p (or set of processes P) is L C Act, L
finite s.t.

p MUST L iff Vp' s.t. p=p/, 3a € L such that p’ ==.

P MUST L iff ¥p € P.p MUST L. <
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Then, the must testing preorder can be characterised in terms of strings and must-sets as
follows.

» Definition 5. p <. ¢ if for every s € Act™, for all finite L C Act, if p |} s then

gl s.
(p after s) MUST L implies (g after s) MUST L. <

» Theorem 6 ([7]). Crmust="must-

3 A testing preorder with uncoordinated observers

The must testing preorder is defined in terms of the tests that each process is able to pass.
Remarkably, the classical setting can be formulated by considering only sequential tests (see
the characterisation of minimal tests in [7]). Each sequential test is a unique, centralised
process that handles all the interaction with the service under test and, therefore, has a
complete view of the externally observable behaviour of the service. For this reason, we refer
to the classical must testing preorder as a centralised preorder. Multiparty interactions are
generally structured in such a way that pairs of partners communicate through dedicated
channels, for example, partner links in service oriented models or buffers in communicating
machines [1]. Conceptually, the interface (i.e., the set of channels) of a service is partitioned
and the service interacts with each partner by using only specific sets of channels in its
interface. In addition, there are scenarios in which partners frequently do not know each
other and cannot communicate directly. As a direct consequence, the partners of a process
cannot establish causal dependencies among actions that take place over different parts of
the interface. These constraints reduce the discriminating power of partners and call for
coarser equivalences that equate processes that cannot be distinguished by independent sets
of sequential processes only interested in specific interactions.

» Example 7. Consider the classical scenario for planning a trip. A user U interacts with a
broker B, which is responsible for booking flights provided by a service F' and hotel rooms
available at service H. The expected interaction can be described as follows: U makes a
booking request by sending a message req to B (we will just describe the interaction and
abstract away from data details such as trip destination, departure dates and duration).
Depending on the request, B may contact service F' (for booking just a flight ticket), H (for
booking rooms) or both. Service B uses channels reqF and reqH to respectively contact F
and H (for the sake of simplicity, we assume that any request to F' and H will be granted).
Then, the expected behaviour of B can be described with the following process:

By o req.(T.reqF + T.reqH + T.reqH .reqF)

In this process, the third branch represents B’s choice to contact first H and then F.
Nevertheless, the other partners (U, F and H) are not affected in any way by this choice,
thus they would be equally happy with alternative definitions such as:

B, d:efreq.(T.reqF + T.reqH + T.reqF .reqH )
B d:efreq.(T.reqF + T.reqH + T.reqH .reqF + T.reqF .reqH)

Unfortunately, By, By and Bs are distinguished by the must testing equivalence. It suffices
to consider oy = Teq.(1.1 + reqF.(7.1 + reqH.0)) for showing that By Zmust B1 and that
By Zmust Be, and use 01 = Teq.(7.1 + reqH.(7.1 + reqgF.0)) for proving that By Zmust Ba. <
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This section is devoted to the definition and characterization of a preorder that is coarser
than the classical must preorder and relates processes that cannot be distinguished by
distributed contexts. We start by introducing the notion of uncoordinated observers.

» Definition 8 (Uncoordinated observer). A process Il;co.n0i = 09 || ... || 0n is an unco-
ordinated observer if n(o;) Nn(o;) = 0 for all ¢ # j. <

Obviously, the condition n(o;) Nn(o;) = 0 forbids the direct communication between the
sequential components of an uncoordinated observer. As a consequence, a distributed observer
cannot impose a total order between actions that are controlled by different components
of the observer. Indeed, the executions of a distributed observer are the interleavings
of the executions of all sequential components {0;};co..n» (this property is formally stated
in Section 3.1, Lemma 11). We remark that a configuration does report success (i.e.,
perform action v') only when all sequential processes in the composition do report success; an
uncoordinated observer reports success when all its components report success simultaneously.

The uncoordinated must testing preorder is obtained by restricting the set of observers to
consider just uncoordinated observers over a suitable partition of the interface of a process.
We will say I = {I;};c0...n is an interface whenever I is a partition of Act and Vo € Act,
«a € I; implies @ € I;. In the remaining of this paper we usually write only the relevant part
of an interface. For instance, we will write {{a}, {b}} for any interface {Iy, 1} such that
CLEIOaHdbEIl.

» Definition 9 (Uncoordinated must preorder C! ). Let T = {I;};c0.., be an interface. We
say p CL ¢ iff for all T;c0. ,,0; such that n(o;) C I;, p must [;eq..,0; implies ¢ must I;cq. ,,0;-

—unc

We write p ~ . ¢ when both p C. ¢ and ¢ CL . p. <

» Example 10. Consider the scenario presented in Example 7 and the following interface
I = {{req}, {reqF},{reqH}} for the process B that thus interacts with each of the other
partners by using a dedicated part of its interface. It can be shown that the three definitions
for B in Example 7 are equivalent when considering the uncoordinated must testing preorder,
ie., By ~. . By ~.. Bs. The actual proof, which uses the (trace-based) alternative
characterization of the preorder, is deferred to Example 15. |

3.1 Semantic characterisation

We now address the problem of characterising the uncoordinated must testing preorder in
terms of traces and must-sets. In order to do that, we shift from strings to Mazurkiewicz
traces [10]. A Mazurkiewicz trace is a set of strings, obtained by permuting independent
symbols. Traces represent concurrent computations, in which commuting letters stand for
actions that execute independently of one another and non-commuting symbols are causally
dependent actions. We start by summarizing the basics of the theory of traces in [10].

Let D C Act x Act be a finite, equivalence relation, called the dependency relation, that
relates the actions that cannot be commuted. Thus if («,3) € D, the two actions have
to be considered causally dependent. Symmetrically, Ip = (Act x Act) \ D stands for the
independency relation with (o, 8) € Ip meaning that « and § are concurrent.

The trace equivalence induced by the dependency relation D is the least congruence =p
in Act such that for all a, 8 € Act: (o, 8) € Ip = a8 =p Pa.

The equivalence classes of =p, denoted by [s]p, are the (Mazurkiewicz) traces, namely
the strings quotiented via =p. The trace monoid, denoted as M(D), is the quotient monoid
M(D) = Act™/=, whose elements are the traces induced by D. We remark that no action
can commute with v because Ip is defined over Act x Act.
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Let I be an interface, the dependency relation induced by I is D = ;oI x I. The
alternative characterisation of the uncoordinated preorder is defined in terms of equivalence
classes of traces. Hence, we extend the transition relation and the notions of convergence
and residuals to equivalence classes of strings:

q Qﬁ ¢ if and only if 3s’ € [s]p such that ¢ = q

pl[s]lp ifVs € [s]p.p s

(p after [s]p) = {p' | p 22 p'}

Now we are able to characterise the behaviour of an uncoordinated observer. We formally
state that an uncoordinated observer reaches the same processes after executing any of the
sequences of actions in an equivalence class. This result is instrumental to the proof of the
alternative characterisation of the uncoordinated preorder.

» Lemma 11. Let o = ;. ,0; be an observer for the interface 1 = {I;}ico.n and D the
dependency relation induced by 1. Then, for all s € Act* and s’ € [s|p we have 0 == o iff

s ’
0— 0.

» Corollary 12. Let o = I;cq..n0; be an observer for the interface 1 = {I;}ico.., and D the
dependency relation induced by 1. Then, Vs € Act™, s’ € [s]p,

1. s € str(o) implies s’ € str(0) .

2. ol s implieso | s'.

3. (o after s) MUST L implies (o after s') MUST L.

4. If there exists an unsuccessful computation o ==, then there exists an unsuccessful

. S
computation 0 =>.

The alternative characterisation for the uncoordinated preorder mimics the definition
of the classical one, but relies on traces. In the definition below, the condition L C I with
I €1, captures the idea that each observation is relative to a specific part of the interface.

» Definition 13. Let I be an interface and D the dependency relation induced by I. Then,
p =L . qif for every s € Act®, for any part I € I, for all finite L C I, if p |} [s|]p then

L ql[slp
2. (p after [s]p) MUST L implies (q after [s]p) MUST L <

» Theorem 14. C! —<I

—unc —unc”

In the following we will write LZI) [s)p for the smallest set such that if (p after [s]p) MUST L

and L C I then L! C L.
p,[s]p

» Example 15. We take advantage of the alternative characterisation of the uncoordinated
preorder to show that the three processes for the broker in Example 7 are equivalent when
considering T = {{req}, {reqF}, {reqH}}. Actually, we will only consider By ~. _ Bi, being
that the proofs for By ~. _ By and B; ~. . Bs are analogous.

Firstly, we have to consider that By |} s and By || s for any s because By and B,
do not have infinite computations. The relation between must-sets are described in the
two tables below. The first table shows the sets (By after [s]p) and ng’[S]D. Note that
[s]p in the first column will be represented by any string s’ € [s]p. Moreover, we write

“—” in the tree last columns whenever Lgo [s]p does not exist. The second table does

the same for B;. In the tables, we let Bj stand for 7.reqF + T.reqH + 7.reqH .reqF and

/

| stand for T.reqF + T.reqH + T.1eqF .reqH .
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sl Boatter sl (150, L) L))
€ By {req} - -
req {BY{,, reqF, reqH , reqH .reqF'} — - -
req.reqF {o} - - -
req.reqH {0, reqF} — — —
req.reqF.reqH {0} — — —
other 0 ) 0 0
sl Biafer (dp LR, L) Lhnta)
¢ By {reqy - -
req {Bj, reqF, reqH , reqF .reqH } — — —
req.reqF {0, reqH } — - -
req.reqH {0} - - -
req.reqF .reqH {0} — — —
other 0 0 0 0

By inspecting the tables, we can check that for any possible trace [s]p and I € L, it holds
that LIBO7[S]D = Lgh[s]D. Consequently, (By after [s|p) MUST L iff (B; after [s]p) MUST L
and thus we have By ~., .. Bj.

We now present two additional examples that help us in understanding the discriminating
capability of the uncoordinated preorder, its differences with the classical must preorder and
its adequacy for modelling process conformance.

The first of these examples shows that a process that does not communicate its internal
choices to all of its clients is useless in a distributed context.

» Example 16. Consider the process p = 7.a+7.b that is intended to be used by two partners
with the following interface: I = {{a},{b}}. We show that this process is less useful than

0 in an uncoordinated context, i.e., 7.a + 7.b C. _ 0. It is immediate to see that p and 0

strongly converge for any s € Act™, then the minimal sets Lia[};b, L;b[];b, Léa[ib and Léb[i]D

presented in the tables below are sufficient for proving our claim.

slp|p after [s]p |27 Ly slp |0 after [s]p | L7, LT,
€ Dp,a,b — — € 0 - —
a {0} — - a 0 0 0
b {0} - - b ) 0 0
other ) 0 0 other ) 0 0

Note that differently from the classical must preorder, the uncoordinated preorder does
not consider the must-set {a, b} to distinguish p from 0 because this set involves channels
in different parts of the interface. The key point here is that each internal reduction of p
is observed just by one part of the interface: the choice of branch a is only observed by
one client and the choice of b is observed by the other one. Since uncoordinated observers
do not intercommunicate, they can only report success simultaneously if they can do it
independently from the interactions with the tested process, but such observers are exactly
the ones that 0 can pass.

Like in the classical must preorder, we have that 0 [, . 7.a + 7.b. This is witnessed by
the observer o = @.0 + 7.1 || 1 that is passed by 0 but not by 7.a + 7.b. <

I
unc

The second example shows that the uncoordinated preorder falls somehow short with
respect to the target we set in the introduction of allowing servers to swap actions that are
targeted to different clients.
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» Example 17. Consider the interface I = {{a}, {b}} and the two pairs of processes
ab+a+band ba+a+b

a.b and b.a

By inspecting traces and must-sets in the two tables below, where we use p and ¢ to

denote a.b+a+ b and b.a+a+b

sl |p after slp[ 1,70, Ly, sl |a after ()b [ Ly, Ly,
€ {r} {a} {0} € {p} {a} {0}
a {b,0} - — a {0} - -
b {0} — — b {a,0} — —
ab {0} - - ab {0} - -
other 0 0 0 other 0 0 0
It is easy to see that
abta+b~ ba+a+bd

unc

However, by using o =@.1 || 1 and o/ = 1 || b.1 as observers, it can be shown that

abZl ba and baZl . ab

Note that o = @.1 || 1 actually interacts with the process under test by using just one
part of the interface and relies on the fact that the remaining part of the interface stays
idle. Thanks to this ability, uncoordinated observers have still a limited power to track some
dependencies among actions on different parts of the interface.

The preorder presented in the next section limits further the discriminating power of
observers and allows us to equate processes a.b and b.a. |

4 A testing preorder with independent observers

In this section we explore a notion of equivalence equating processes that can freely permute
actions over different parts of their interface. As for the uncoordinated observers, the
targeted scenario is that of a service with a partitioned interface interacting with two or
more independent partners by using separate sets of ports. In addition, each component
of an observer cannot exploit any knowledge about the design choices made by the other
components, i.e., each of them has a local view of the behaviour of the process that ignores
all actions controlled by the remaining components. Local views are characterised in terms

of a projection operator defined as follows.

» Definition 18 (Projection). Let V C N be a set of observable ports. We write p | V for
the process obtained by hiding all actions of p over channels that are not in V. Formally,

pSp acVUV p=p agVUuv
plV =p IV plVop |V

<

» Definition 19 (Independent (must) preorder CI ). Let I = {I;};c0..n be an interface. We
say p E]ilnd q iff for all T;¢q. 0; such that n(o;) C I;, p [ I; must o; implies ¢ | I; must 0;. <

Note that a.b and b.a cannot be distinguished anymore by the observer o =@.1 || 1 used

in the previous section to prove a.b zi,{,?}’{”}} b.a (Example 17), because a.b | {a} must @.1,

b.a [ {a} must@.l, a.b | {b} must 1 and b.a | {b} must 1. Indeed, later (Example 24) we will
see that:
i{r1{d¢1}7{l>}} ba

a.b=
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4.1 Semantic characterisation

In this section we address the characterisation of the independent preorder in terms of traces.
We start by introducing an equivalence notion of traces that ignores hidden actions.

» Definition 20 (Filtered traces). Let I C Act. Two strings s1, s € Act™ are equivalent up-to
I, written s; =; so, if there exist s},s, € (Act\ I)* s.t. s18} =p sys, where D is the
dependency relation induced by {I,Act\ I'}. We write [[s]]; for the equivalence class of s. <

Basically, two traces are equivalent up-to I when they coincide after the removal of hidden
actions. Note that the set s’ € [[s]]; N I* has a unique element, which is the string obtained
by removing from s all actions that are not in I. We write s [ I to denote that element. As
for the distributed preorder, we extend the notions of reduction, convergence and residuals
to equivalence classes of strings.

q (elly ¢ if and only if 3t € [[s]]; such that ¢ == ¢’
pd [[s]]; if and only if Vt € [[s]];.p ¢

(p after [[s]]1) = {0 | p 2 p'}

The following auxiliary result establishes properties relating reductions, hiding and filtered
traces, which will be useful in the proof of the correspondence theorem.

» Lemma 21.

1. p==yp impliesp | T S=”>p’ M.

pl T == p' | T implies 3t € [[s]]; andp:t>p’.

p 1 [[s]]r impliesp [ T s | 1.

(p after [[s]];) MUST L ff (p| I after s|[I) MUST LNI.

MWD

The alternative characterisation for the independent preorder is given in terms of filtered
traces.

» Definition 22. Let p j]ilnd q if for every I €1, for every s € I'*, and for all finite L C I, if
p | [[s]]r then

L g [[slls
2. (p after [[s]]r) MUST L U (Act\I) implies (g after [[s]];) MUST L U (Act\I)

We would like to draw attention to condition 2 above; it only considers must-sets that
always include all the actions in (Act\/) to avoid the possibility of distinguishing reachable
states because of actions that are not in /. Consider that this condition could be formulated
as follows: for all finite L C Act,

(p after [[s]];) MUST L implies 3L’ s.t (¢ after [[s]];) MUST L' and LNI=L'NI

that makes evident that only the actions from observable part of the interface are relevant.
Y |
» Theorem 23. C, == ..

» Example 24. Consider the processes p = a.b and ¢ = b.a and the interface T = {{a}, {b}}.
The table below shows the analysis for the part of the interface {a} .
[[s]] after [[s]](ay | L1 after [[s]];a | L1

{a} |P {a} | & s | 4 {a} | Hq.0s)l,
€ {p} {a} {g,a} {a}
a {0,b} - {o}
other 0 0 )
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When analysing the sets (p after [[¢]](41) = {p} and (q after [[¢]]{,}) = {q,a}, we ignore
the fact that ¢ starts with a hidden action b; the only relevant residuals are those performing
a. With a similar analysis we conclude that the condition on must-sets also holds for set {b}.
Hence, a.b ~! ; b.a holds. <

The following example illustrates also the fact that independent observers are unable to
track causal dependencies between choices made in different parts of the interface.

» Example 25. Let p; = a.c+ b.d and ps = a.d + b.c be two alternative implementations for
a service with interface I = {{a, b}, {c,d}}. These two implementations are distinguished
by the uncoordinated preorder (py aéiig’b}’{c’d}} p2) because of the observers 0oy =a.1 || ¢.1
(pr ZEHEHED ) and 0p = 0.1 || 2.1 (po ZHEH M py).

They are instead equated by the independent preorder, p; %]ilnd p2, Indeed, if only the
part of the interface {a,b} is of interest, we have that p; and ps are equivalent because
they exhibit the same interactions over channels a and b. Similarly, without any a priori
knowledge of the choices made for {a, b}, the behaviour observed over {c,d} can be described
by the non-deterministic choice 7.c + 7.d, and hence, p; and p- are indistinguishable also
over {c,d}.

We use the alternative characterisation to prove our claim. As usual, p; |} s and ps |} s
for any s. The tables below show coincidence of the must-sets. We would only like to remark
that ac € [[a]]{q,p} and, consequently, p; after [[a]];,) contains also process 0.

[0 gaey |1 after [[sl)any | Ly, |p2 after (1sl)any | Lynih,
¢ P {a, b} D2 {a, b}
a {c, 0} - {d, 0} _
b {d’ O} - {C, O} —
other 0 0 0 0
(sl ey |1 after (sl oy [ L7y, P2 after (el)ony | Lyn,
¢ P {e, d} P2 {c,d}
¢ {0} - {0} _
d {0} - {0} _
other 0 0 0 0

<

5 Relation between must, uncoordinated and independent preorders

In this section, we formally study the relationships between the classical must preorder
and the two preorders we have introduced. We start by showing that a refinement of an
interface induces a coarser preorder, e.g., splitting the observation among more uncoordinated
observers decreases the discriminating power of the tests. We say that an interface I is a
refinement of another interface I when the partition I’ is finer than the partition I.

T
unc q'

» Lemma 26. Let I be an interface and I’ a refinement of 1. Then, p CL. . q implies p C

This result allows us to conclude that the uncoordinated preorder is coarser than the
classical must testing preorder. It suffices to note that the preorder associated to the maximal
element of the partition lattice, i.e., the trivial partition I = {Act}, corresponds to Cyyst-

» Proposition 27. Let I be an interface. Then, p Cmust ¢ implies p T q.
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The converse of Lemma 26 and Proposition 27 do not hold. Consider the processes
p=ab+a+band ¢ = b.a—+a+0b It has been shown, in Example 17, that we have
D Eiif}’{b}} q. Nonetheless, it is easy to check that p Zmust g (i€, p EénAcCt} q) by using
0= b.(7.1 +@.0) as observer.

We also have that the independent preorder is coarser than the uncoordinated one.

» Proposition 28. Let I be an interface. Then, p Tl q implies p T} 4 q.

The converse does not hold, i.e., p CL , g does not imply ¢ CL.. p. Indeed, we have that
a.b E;{nga}’{b}} b.a (Example 24) but a.b Zéig}’{b}} b.a (Example 17).

6 Conclusions and related works

In this paper we have explored different relaxations of the must testing preorder tailored
to define new behavioural relations that, in the framework of Service Oriented Computing,
are better suited to study compliance between contracts exposed by clients and servers
interacting via synchronous binary communication primitives.

In particular, we have considered two different scenarios in which contexts of a service
are represented by processes with distributed control. The first variant, that we called
uncoordinated preorder, corresponds to multiparty contexts without runtime communication
between peers but with the possibility of one peer blocking another because it does not
perform the expected action. Indeed, the observations at the basis of our experiments are
designed with the assumption that users of a service interact only via dedicated ports but
might be influenced by the fact that other partners do not perform expected actions. The
second preorder we introduced is called independent preorder. It accounts for partners that
are completely independent from the behaviour of the other ones. Indeed, from a viewpoint
of a client, actions by other clients are considered as unobservable actions.

We have shown that the discriminating power of the induced equivalences decreases
as observers become weaker; and thus that the independent preorder is coarser than the
uncoordinated preorder which in turn is coarser than the classical testing preorder. As
future work we plan to consider different "real life" scenarios and to assess the impact of the
different assumptions at the basis of the two new preorders and the identifications/orderings
they induce. We plan also to perform further studies to get a fuller account, possibly via
axiomatizations, of their discriminating power. In the near future, we will also consider the
impact of our testing framework on calculi based on asynchronous interactions.

Several variants of the must testing preorder, contract compliance and sub-contract
relation have been developed in the literature to deal with different aspects of services
compositions, such as buffered asynchronous communication [4, 14, 13], fairness [15], peer-
interaction [2], among others. We remark that these approaches deal with aspects that
are orthogonal to the discriminating power of the distributed tests analysed in this work.
Our preorders have some similarities with those relying on buffered communications in that
both aim at guaranteeing that actions performed by independent peers can be reordered.
Nevertheless, our work considers a model with synchronous communication and, hence,
message reordering is not obtained by swapping buffered messages. As mentioned above,
we have left the study of distributed tests under asynchronous communication as a future
work. However, we would like to remark that, even the uncoordinated and the independent
preorders are different from those in [4, 14, 13] that permit explicit action reordering. The
paradigmatic example is the equivalence a.c + b.d %i{n(z’b}’{c’d} a.d + b.c, which does not hold
for any of the preorders with buffered communication. The main reason is that, even in
presence of buffered communication, the causality, e.g., between a and c is always observed.
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